線性代數 ─ 基礎與應用
武維疆 著
- 出版商: 五南
- 出版日期: 2012-11-14
- 定價: $450
- 售價: 9.5 折 $428
- 貴賓價: 9.0 折 $405
- 語言: 繁體中文
- 頁數: 400
- ISBN: 957116898X
- ISBN-13: 9789571168982
-
相關分類:
線性代數 Linear-algebra
立即出貨 (庫存=1)
買這商品的人也買了...
-
$810$770 -
$250Python 數據分析基礎教程-NumPy 學習指南, 2/e (NumPy Beginner's Guide, 2/e)
-
$1,200$900 -
$505Python 金融大數據分析 (Python for Finance)
-
$474$450 -
$680$537 -
$580$458 -
$650$507 -
$380$342 -
$890$846 -
$560$420 -
$980$774 -
$294$279 -
$500$390 -
$602Boost 程序庫完全開發指南 ― 深入 C++ ”準”標準庫, 5/e
-
$704C++高級編程(第4版)
-
$480$379 -
$1,188$1,129 -
$750$638 -
$620$484 -
$780$616 -
$520$406 -
$780$663 -
$580$493 -
$500$390
相關主題
商品描述
<內容簡介>
在第一章中探討的是向量分析及空間解析幾何,介紹了向量運算之物理意義及其在空間及幾何上的應用。若讀者已經在工程數學或其他相關課程中了解相關知識,可略過本章直接研讀接下來之章節,在邏輯上依然具有連貫性。
第二章探討的主題是矩陣的基本運算,其中行列式及反矩陣是本章之重點,此外向量函數(多變數函數)的微分亦在本章中詳細討論。
第三章探討的主題是利用高斯消去法(GAUSS-JORDAN ELIMINATION METHOD)求解線性方程組,並延伸出矩陣的LU分解。
第四至第七章為本書或是線性代數之主軸,其主要內容為向量空間與線性映射。在第四章中闡述了向量空間、基底、正交補空間、與內積空間,此外介紹了Gram-Schmidt 正交化過程與QR 分解。
第五章描述之重點為線性映射與相似變換,在不同空間下之基底變換為研讀之重點。
第六章定義了零空間、像空間並深入探討映射理論。由此延伸出極為重要之主題:正交投影、HOUSEHOLDER 轉換、與Curve fitting。
第七章探討的主題是矩陣之特徵分解,除了定義特徵值及特徵向量之外,詳盡推導並闡述特徵性質。在本章末節介紹SINGULAR VALUE DECOMPOSITION (SVD)。
第八章為矩陣特徵分解之延伸,其兩大重點為:矩陣之對角化與喬登正則式 (Jordan canonical form)。
有關於矩陣之綜合應用描述於第九章,包含了二次式、矩陣之正定、矩陣之對角化在聯立微分方程式上的應用、積分上的應用,末節探討Cayley-Hamilton定理與RAYLEIGH'S QUOTIENT。
<章節目錄>
Chapter 1 向量分析
1-1 向量之基本運算
1-2 空間解析幾何
Chapter 2 行列式及反矩陣
2-1 矩陣的定義及特殊矩陣
2-2 矩陣的基本運算
2-3 行列式
2-4 反矩陣
2-5 向量函數的微分
Chapter 3 矩陣的LU分解
3-1 線性方程組
3-2 高斯消去法(Gauss-Jordan elimination method)
3-3 LU分解 (LU Decomposition)
Chapter 4 向量空間
4-1 向量空間
4-2 正交補空間
4-3 Norm 與內積空間
4-4 Gram-Schmidt 正交化過程與QR 分解
Chapter 5 線性映射
5-1 線性映射與相似變換
5-2 基底變換
Chapter 6 映射理論
6-1 映射理論
6-2 正交投影
6-3 鏡射與Householder 轉換
6-4 Curve fitting
Chapter 7 矩陣之特徵分解
7-1 特徵值及特徵向量
7-2 特殊矩陣及其性質
7-3 特徵性質
7-4 Singular Value Decomposition (SVD)
Chapter 8 對角化及喬登正則式
8-1 矩陣之對角化
8-2 喬登正則式(Jordan canonical form)
8-3 可對角化矩陣之函數
8-4 不可對角化矩陣之函數
Chapter 9 矩陣之綜合應用
9-1 雙線式及二次式
9-2 聯立微分方程式上的應用
9-3 積分上的應用
9-4 Cayley-Hamilton定理
參考資料