Hands-on ML Projects with OpenCV: Master computer vision and Machine Learning using OpenCV and Python

S, Mugesh

相關主題

商品描述

DESCRIPTION

This book is an in-depth guide that merges machine learning techniques with OpenCV, the most popular computer vision library, using Python. The book introduces fundamental concepts in machine learning and computer vision, progressing to practical implementation with OpenCV. Concepts related to image preprocessing, contour and thresholding techniques, motion detection and tracking are explained in a step-by-step manner using code and output snippets.


Hands-on projects with real-world datasets will offer you an invaluable experience in solving OpenCV challenges with machine learning. It's an ultimate guide to explore areas like deep learning, transfer learning, and model optimization, empowering readers to tackle complex tasks. Every chapter offers practical tips and tricks to build effective ML models.


TABLE OF CONTENTS

Chapter 1: Getting Started With OpenCV

Chapter 2: Basic Image & Video Analytics in OpenCV

Chapter 3: Image Processing 1 using OpenCV

Chapter 4: Image Processing 2 using OpenCV

Chapter 5: Thresholding and Contour Techniques Using OpenCV

Chapter 6: Detect Corners and Road Lane using OpenCV

Chapter 7: Object And Motion Detection Using Opencv

Chapter 8: Image Segmentation and Detecting Faces Using OpenCV

Chapter 9: Introduction to Deep Learning with OpenCV

Chapter 10: Advance Deep Learning Projects with OpenCV

Chapter 11: Deployment of OpenCV projects




By the end, you would have mastered and applied ML concepts confidently to real-world computer vision problems and will be able to develop robust and accurate machine-learning models for diverse applications.


Whether you are new to machine learning or seeking to enhance your computer vision skills, This book is an invaluable resource for mastering the integration of machine learning and computer vision using OpenCV and Python.



商品描述(中文翻譯)

《機器學習與OpenCV的計算機視覺指南》是一本深入介紹如何使用Python將機器學習技術與最受歡迎的計算機視覺庫OpenCV相結合的指南。本書從機器學習和計算機視覺的基本概念入手,逐步介紹了如何使用OpenCV進行實際實現。書中通過代碼和輸出片段逐步解釋了與圖像預處理、輪廓和閾值技術、運動檢測和跟踪相關的概念。

通過與真實世界數據集的實踐項目,您將獲得在使用機器學習解決OpenCV挑戰方面的寶貴經驗。本書是探索深度學習、遷移學習和模型優化等領域的最終指南,讓讀者能夠應對複雜任務。每一章都提供實用的技巧和訣竅,以構建有效的機器學習模型。

《目錄》
第1章:開始使用OpenCV
第2章:OpenCV中的基本圖像和視頻分析
第3章:使用OpenCV的圖像處理1
第4章:使用OpenCV的圖像處理2
第5章:使用OpenCV的閾值和輪廓技術
第6章:使用OpenCV檢測角點和道路車道
第7章:使用OpenCV進行物體和運動檢測
第8章:使用OpenCV進行圖像分割和人臉檢測
第9章:深度學習入門與OpenCV
第10章:使用OpenCV進行高級深度學習項目
第11章:OpenCV項目的部署

通過閱讀本書,您將能夠自信地掌握並應用機器學習概念來解決現實世界的計算機視覺問題,並能夠為各種應用開發出強大而準確的機器學習模型。

無論您是初次接觸機器學習還是希望提升計算機視覺技能,本書都是掌握如何使用OpenCV和Python集成機器學習和計算機視覺的寶貴資源。