Hands-on ML Projects with OpenCV: Master computer vision and Machine Learning using OpenCV and Python
暫譯: 實作機器學習專案與 OpenCV:使用 OpenCV 和 Python 精通電腦視覺與機器學習

S, Mugesh

相關主題

商品描述

DESCRIPTION

This book is an in-depth guide that merges machine learning techniques with OpenCV, the most popular computer vision library, using Python. The book introduces fundamental concepts in machine learning and computer vision, progressing to practical implementation with OpenCV. Concepts related to image preprocessing, contour and thresholding techniques, motion detection and tracking are explained in a step-by-step manner using code and output snippets.


Hands-on projects with real-world datasets will offer you an invaluable experience in solving OpenCV challenges with machine learning. It's an ultimate guide to explore areas like deep learning, transfer learning, and model optimization, empowering readers to tackle complex tasks. Every chapter offers practical tips and tricks to build effective ML models.


TABLE OF CONTENTS

Chapter 1: Getting Started With OpenCV

Chapter 2: Basic Image & Video Analytics in OpenCV

Chapter 3: Image Processing 1 using OpenCV

Chapter 4: Image Processing 2 using OpenCV

Chapter 5: Thresholding and Contour Techniques Using OpenCV

Chapter 6: Detect Corners and Road Lane using OpenCV

Chapter 7: Object And Motion Detection Using Opencv

Chapter 8: Image Segmentation and Detecting Faces Using OpenCV

Chapter 9: Introduction to Deep Learning with OpenCV

Chapter 10: Advance Deep Learning Projects with OpenCV

Chapter 11: Deployment of OpenCV projects




By the end, you would have mastered and applied ML concepts confidently to real-world computer vision problems and will be able to develop robust and accurate machine-learning models for diverse applications.


Whether you are new to machine learning or seeking to enhance your computer vision skills, This book is an invaluable resource for mastering the integration of machine learning and computer vision using OpenCV and Python.



商品描述(中文翻譯)

描述
本書是一本深入的指南,將機器學習技術與最受歡迎的計算機視覺庫 OpenCV 結合,使用 Python 語言。書中介紹了機器學習和計算機視覺的基本概念,並逐步進入 OpenCV 的實際應用。與圖像預處理、輪廓和閾值技術、運動檢測和追蹤相關的概念,將以逐步的方式使用代碼和輸出片段進行解釋。

實作專案使用真實世界的數據集,將為您提供解決 OpenCV 挑戰與機器學習的寶貴經驗。這是一本探索深度學習、遷移學習和模型優化等領域的終極指南,幫助讀者應對複雜的任務。每一章都提供實用的技巧和竅門,以建立有效的機器學習模型。

目錄
第 1 章:OpenCV 入門
第 2 章:OpenCV 中的基本圖像與視頻分析
第 3 章:使用 OpenCV 的圖像處理 1
第 4 章:使用 OpenCV 的圖像處理 2
第 5 章:使用 OpenCV 的閾值和輪廓技術
第 6 章:使用 OpenCV 檢測角落和車道
第 7 章:使用 OpenCV 的物體與運動檢測
第 8 章:使用 OpenCV 的圖像分割和人臉檢測
第 9 章:OpenCV 的深度學習介紹
第 10 章:使用 OpenCV 的進階深度學習專案
第 11 章:OpenCV 專案的部署

到最後,您將自信地掌握並應用機器學習概念於現實世界的計算機視覺問題,並能夠為各種應用開發穩健且準確的機器學習模型。

無論您是機器學習的新手,還是希望提升計算機視覺技能,本書都是掌握使用 OpenCV 和 Python 整合機器學習與計算機視覺的寶貴資源。