Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices (Cognitive Systems Monographs)
暫譯: 利用新興納米級設備的神經形態硬體進展(認知系統專著)
- 出版商: Springer
- 出版日期: 2017-01-31
- 售價: $6,340
- 貴賓價: 9.5 折 $6,023
- 語言: 英文
- 頁數: 210
- 裝訂: Hardcover
- ISBN: 8132237013
- ISBN-13: 9788132237013
海外代購書籍(需單獨結帳)
買這商品的人也買了...
相關主題
商品描述
This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.
商品描述(中文翻譯)
本書涵蓋了神經形態硬體工程領域中與新興納米級裝置相關的所有主要研究方面。特別強調了混合低功耗CMOS-納米裝置設計的領先工作。本書為讀者提供了設計高效生物啟發硬體的雙向(自上而下和自下而上)視角。在納米裝置層面,重點關注各種新興的電阻記憶體(RRAM)技術。在演算法層面,則探討了監督式和隨機學習範式的最佳化實現,例如:尖峰時間依賴性可塑性(STDP)、長期增強(LTP)、長期抑制(LTD)、極限學習機(ELM)以及限制玻爾茲曼機(RBM)的早期應用等。這些貢獻討論了系統層級的功率/能量/寄生權衡以及複雜的現實世界應用。本書適合對該領域感興趣的高級研究人員和學生。