生物群智計算與機器學習
朱雲龍、陳瀚寧、申海、張浩
- 出版商: 清華大學
- 出版日期: 2020-07-01
- 定價: $474
- 售價: 7.9 折 $374
- 語言: 簡體中文
- ISBN: 7302548587
- ISBN-13: 9787302548584
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
-
機器學習實戰$414$393 -
機器學習$648$616 -
$237MATLAB 計算機視覺與深度學習實戰 -
$474深度學習入門之 PyTorch -
$403深度學習之 PyTorch 實戰電腦視覺 -
類神經網路實戰:使用 Python (Make Your Own Neural Network)$420$328 -
PyTorch 機器學習從入門到實戰$354$336 -
深度學習入門教室:6堂基礎課程 + Python 實作練習,Deep Learning、人工智慧、機器學習的理論和應用全圖解$550$495 -
深度學習之 PyTorch 物體檢測實戰$534$507 -
$352對抗機器學習:機器學習系統中的攻擊和防禦 -
$374機器學習算法與應用(微課視頻版) -
$301Web 安全漏洞原理及實戰 -
GAN 對抗式生成網路 (GANs in Action: Deep learning with Generative Adversarial Networks)$750$593 -
$469對抗機器學習 -
Python 機器學習 (上), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$620$484 -
Python 機器學習超進化:AI影像辨識跨界應用實戰 (附100分鐘影像處理入門影音教學/範例程式)$450$356 -
Python 機器學習 (下), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$520$406 -
圖解 AI|機器學習和深度學習的技術與原理$450$356 -
$403網絡安全之機器學習 (Hands-on Machine Learning for Cyber Security: Safeguard your system by making your machines intelligent using Python ecosystem) -
$398人工智能在網絡安全中的應用 -
$297可解釋機器學習:黑盒模型可解釋性理解指南 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
$403可解釋機器學習:模型、方法與實踐 -
$454深入淺出隱私計算:技術解析與應用實踐 -
$469精通 Transformer : 從零開始構建最先進的 NLP 模型
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
目錄大綱
目錄
第1章緒論
1.1人工智能簡介
1.1.1人工智能定義
1.1.2人工智能發展階段
1.1.3人工智能研究內容
1.2人工智能發展歷史及趨勢
1.2.1人工智能發展歷史
1.2.2人工智能研究趨勢
1.3生物群智計算
1.3.1生物群智計算與人工智能
1.3.2生物群智計算與復雜適應系統
1.3.3生物群智計算算法
1.4機器學習
1.4.1機器學習與人工智能
1.4.2機器學習與復雜系統
1.4.3機器學習算法
參考文獻
第2章生物群智計算與框架模型
引言
2.1生物群智計算算法綜述
2.1.1遺傳算法
2.1.2粒子群優化
2.1.3蟻群優化
2.1.4人工蜂群算法
2.1.5細菌覓食算法
2.1.6群搜索算法
2.1.7DNA計算
2.1.8自組織遷移算法
2.1.9膜計算
2.1.10元胞自動機
2.1.11神經網絡
2.1.12人工免疫系統
2.2生物群智計算統一框架模型
2.2.1生物群智計算模式的統一框架理念
2.2.2個體群體群落: 生物群智計算模式的總體形式化描述
2.2.3環境
2.3生物群智計算算法研究趨勢
2.3.1並行生物群智計算
2.3.2融合推理與學習的生物群智計算
2.3.3生物動力學群智計算
2.3.4微生物群體感應控制機制及算法研究
2.4生物群智計算應用研究趨勢
2.4.1納米分子生物
2.4.2虛擬生物
2.4.3人工大腦
2.4.4進化硬件
2.4.5進化模擬
2.4.6群集機器人
2.4.7雲計算
2.4.8大數據
參考文獻
第3章生物個體行為模式與自適應優化方法
引言
3.1自然進化中的個體行為模式
3.1.1生物個體的覓食行為分類
3.1.2適應性主體
3.1.3效率與最優覓食理論
3.2基於生物個體行為的計算模式設計
3.2.1基於生物個體行為的統一優化框架
3.2.2基於生物個體行為的基本操作
3.3生物個體建模與模擬分析
3.3.1生物系統個體的形式化定義
3.3.2典型生物個體行為的建模與模擬分析
3.3.3個體環境間作用關系描述與規則模型
3.4細菌自適應覓食優化算法
3.4.1算法的基本思想與流程
3.4.2算法的形式化描述
3.4.3ABFO算法實現步驟
3.4.4算法效能分析
3.5植物根系自適應生長優化算法
3.5.1算法的基本思想
3.5.2算法的形式化描述
3.5.3算法流程
3.5.4算法效能分析
參考文獻
第4章生物種群信息交流模式與生命周期群搜索策略
引言
4.1自然界中單一物種群體內部的信息交流與協作模式
4.1.1生物種群
4.1.2信息交流
4.1.3分工協作與分佈式控制
4.2基於生物群體行為的計算模式設計
4.2.1基於生物群體行為的統一優化框架
4.2.2基於生物群體行為的基本操作
4.3生物種群建模與模擬分析
4.3.1生物系統種群的形式化定義
4.3.2種群內個體通信模型
4.3.3任務分工
4.3.4種群演化模型
4.4基於生命周期和社會學習的細菌覓食算法及其性能分析
4.4.1算法的基本思想與流程
4.4.2算法的形式化描述
4.4.3算法性能分析
4.5生命周期群搜索優化算法及其性能分析
4.5.1算法的基本思想與流程
4.5.2算法的形式化描述
4.5.3實驗設置
4.5.4算法性能分析: 無約束函數
4.5.5算法性能分析: 有約束函數
參考文獻
第5章生物群落演化模式與優化算法
引言
5.1生物群落進化中的種群演化模式
5.1.1生物群落的層次性信息網絡拓撲結構
5.1.2生物群落內種群共生模式的多型性
5.1.3生物群落內種群的增長、遷徙和消亡模式
5.2基於生物群落演化的計算模式設計
5.2.1基於生物群落演化的統一優化框架
5.2.2基於生物群落演化的基本操作
5.3生物群落建模與模擬分析
5.3.1生物系統群落的形式化定義
5.3.2群落拓撲結構的形式化定義
5.3.3基於不同種群關系生物群落演化建模與模擬
5.4基於生物群落演化的優化模型與算法實例設計
5.4.1協同進化算法的發展現狀
5.4.2多群體協同進化統一模型
5.4.3多種群共生協同進化粒子群優化算法
5.4.4算法性能分析
5.4.5基於MSPSO的RFID網絡讀寫器調度
5.5多種群多目標人工蜂群算法
5.5.1算法基本思想與流程
5.5.2算法的形式化描述
5.5.3算法性能分析
5.6基於p最優性準則的多種群多目標優化算法
5.6.1算法基本思想與流程
5.6.2算法的形式化描述
5.6.3算法性能分析
參考文獻
第6章機器學習
6.1引言
6.1.1機器學習的發展史
6.1.2機器學習算法及其適用場景
6.1.3機器學習的分類
6.2深度學習
6.2.1深度學習的現狀與發展趨勢
6.2.2基本思想和框架結構
6.2.3人工神經網絡
6.2.4深度學習的常用模型和方法
6.2.5深度學習實例分析: AlphaGo算法
6.3強化學習
6.3.1強化學習的基本原理和模型
6.3.2深度強化學習
6.3.3強化學習的實例分析: AlphaGo Zero算法
6.4生成式對抗網絡
6.4.1生成式對抗網絡的基本原理
6.4.2生成式對抗網絡的經典模型
6.4.3生成式對抗網絡的應用
6.4.4有待研究的問題
6.5遷移學習
6.5.1遷移學習的基本原理
6.5.2遷移學習的基本步驟
6.5.3遷移學習的問題場景
6.5.4有待研究的問題
參考文獻
第7章評註與展望
引言
7.1生物群智計算理論基礎研究展望
7.1.1有關生物群智計算的有效性研究
7.1.2有關生物群智計算的收斂性研究
7.1.3有關生物群智計算方法的評價標準
7.2生物群智計算算法設計研究展望
7.2.1小生境層面的有關算法設計
7.2.2動態環境層面的有關算法設計
7.3機器學習研究與展望
7.3.1連續統假設悖論
7.3.2機器學習研究展望
7.4人工智能三大悖論
參考文獻
附錄標準測試函數
A.1單目標無約束
A.2單目標有約束
A.3多目標無約束
A.4多目標有約束



