自然語言處理應用與實戰
韓少雲等
- 出版商: 電子工業
- 出版日期: 2023-03-01
- 定價: $612
- 售價: 7.9 折 $483
- 語言: 簡體中文
- 頁數: 284
- ISBN: 7121450178
- ISBN-13: 9787121450174
-
相關分類:
Text-mining
立即出貨
買這商品的人也買了...
-
$390$371 -
$505自然語言處理實戰 : 利用 Python 理解、分析和生成文本
-
$505深入大型數據集:並行與分佈化 Python 代碼 (Mastering Large Datasets: Parallelize and Distribute Your Python Code)
-
$1,188$1,129 -
$1,000$850 -
$620$490 -
$800$680 -
$474$450 -
$505Hadoop 3.x 大數據開發實戰 (視頻教學版)
-
$620$465 -
$299$284 -
$621使用 GitOps 實現 Kubernetes 的持續部署:模式、流程及工具
-
$458BERT 基礎教程:Transformer 大模型實戰
-
$602Python 機器學習原理與算法實現
-
$556PyTorch 高級機器學習實戰
-
$599$569 -
$556機器學習應用與實戰(全彩)
-
$505基於 NLP 的內容理解
-
$474$450 -
$534$507 -
$680$537 -
$539$512 -
$594$564 -
$556深度學習應用與實戰(全彩)
-
$594$564
相關主題
商品描述
本書系統介紹了自然語言處理及深度學習,並結合實際應用場景和綜合案例,深入淺出地講解自然語言處理領域的相關知識。 全書共 15 章,分為 4 個部分。第 1 部分是自然語言處理基礎,首先介紹自然語言處理的相關概念和基本技能,然後介紹詞向量技術和實現方法,最後介紹關鍵詞提取技術。第 2 部分是自然語言處理核心技術,分別介紹樸素貝葉斯算法、N-gram 語言模型、PyTorch 深度學習框架、FastText 模型文本分類和基於深度學習的文本分類。第 3 部分是序列標註,介紹序列標註的具體應用,如 HMM 詞性標註和 HMM 命名實體識別等常見的自然語言處理應用場景。第 4 部分是預訓練模型,它在很大程度上促進了自然語言處理的發展,這部分內容關註預訓練模型的具體應用,如 ALBERT 的命名實體識別、Transformer 的文本分類、BERT的文本相似度計算、ERNIE 的情感分析等。 本書適合對人工智能、機器學習、深度學習和自然語言處理感興趣的讀者閱讀,也可以作為應用型本科院校和高等職業院校人工智能相關專業的教材。
目錄大綱
目 錄
第 1 部分 自然語言處理基礎
第 1 章 緒論 2
1.1 自然語言處理綜述 3
1.1.1 自然語言處理的基本概念 3
1.1.2 自然語言處理的發展歷程 4
1.1.3 自然語言處理的研究內容 5
1.1.4 自然語言處理的挑戰與發展趨勢 7
1.2 文本處理技能 9
1.2.1 字符串處理 9
1.2.2 中文分詞及案例實現 11
1.3 文本數據處理 13
1.3.1 文本操作基礎 13
1.3.2 案例實現——文本數據統計 15
1.3.3 案例實現——詞雲生成 17
本章總結 19
作業與練習 19
第 2 章 詞向量技術 21
2.1 詞向量概述 22
2.1.1 詞向量基礎 22
2.1.2 詞向量表示的問題 22
2.2 詞向量離散表示 23
2.2.1 獨熱編碼 23
2.2.2 詞袋模型 24
2.2.3 詞頻-逆文本頻率 25
2.2.4 案例實現——文本離散表示 25
2.3 詞向量分佈表示 29
2.3.1 神經網絡語言模型 29
2.3.2 Word2vec 模型 31
2.3.3 案例實現——中文詞向量訓練 33
本章總結 39
作業與練習 39
第 3 章 關鍵詞提取 41
3.1 關鍵詞提取概述 42
3.1.1 關鍵詞提取基礎 42
3.1.2 基於 TF-IDF 的關鍵詞提取 42
3.1.3 基於 TextRank 的關鍵詞提取 43
3.1.4 基於 Word2vec 詞聚類的關鍵詞提取 43
3.2 關鍵詞提取的實現 44
3.2.1 案例介紹 44
3.2.2 案例實現——關鍵詞提取綜合案例 45
本章總結 57
作業與練習 57
第 2 部分 自然語言處理核心技術
第 4 章 樸素貝葉斯中文分類 60 4.1 樸素貝葉斯分類算法概述 60
4.1.1 概率基礎 60
4.1.2 樸素貝葉斯分類器 62
4.2 機器學習庫 sklearn 64
4.2.1 sklearn 獲取數據 64
4.2.2 sklearn 數據預處理 64
4.2.3 sklearn 構建模型 65
4.3 案例實現——樸素貝葉斯中文分類 65
本章總結 71
作業與練習 72
第 5 章 N-gram 語言模型 73
5.1 N-gram 概述 73
5.1.1 N-gram 語言模型簡介 73
5.1.2 N-gram 概率計算 74
5.1.3 案例——N-gram 的實現 75
5.2 案例實現——基於 N-gram 的新聞文本預測 77
本章總結 84
作業與練習 84
第 6 章 PyTorch 深度學習框架 85
6.1 PyTorch 基礎 85
6.1.1 PyTorch 的介紹與安裝 85
6.1.2 PyTorch 入門使用 87
6.1.3 梯度下降與反向傳播 92
6.1.4 案例——使用 PyTorch 實現線性回歸 95
6.2 PyTorch 數據加載 99
6.2.1 使用數據加載器的目的 99
6.2.2 DataSet 的使用方法 99
6.2.3 DataLoader 的使用方法 100
6.3 PyTorch 自帶數據集加載 101
本章總結 102
作業與練習 102
第 7 章 FastText 模型文本分類 104
7.1 FastText 模型簡介 104
7.1.1 FastText 模型原理 104
7.1.2 FastText 模型結構 105
7.1.3 FastText 模型優化 105
7.2 案例實現——FastText 模型文本分類 106
本章總結 118
作業與練習 118
第 8 章 基於深度學習的文本分類 119
8.1 基於 TextCNN 的文本分類 119
8.1.1 捲積神經網絡 119
8.1.2 TextCNN 的原理 121
8.2 基於 TextRNN 的文本分類 122
8.2.1 LSTM 原理 122
8.2.2 LSTM 網絡結構 123
8.3 基於 TextRCNN 的文本分類 124
8.3.1 TextRCNN 原理 124
8.3.2 TextRCNN 網絡結構 125
8.4 案例實現——基於深度學習的文本分類 126
本章總結 146
作業與練習 146
第 3 部分 序列標註
第 9 章 HMM 的詞性標註 148
9.1 詞性標註簡介 149
9.1.1 詞性標註的基本概念 149
9.1.2 中文詞性的分類及作用 149
9.1.3 詞性標註體系 150
9.2 HMM 詞性標註的原理和基本問題 151
9.2.1 HMM 詞性標註的原理 151
9.2.2 HMM 的基本問題 151
9.3 案例實現——HMM 的中文詞性標註 152
本章總結 158
作業與練習 158
第 10 章 HMM 的命名實體識別 159
10.1 命名實體識別 160
10.1.1 命名實體識別的概念 160
10.1.2 NER 的標註方法 160
10.2 NER 的 HMM 162
10.3 案例實現——HMM 的中文命名實體識別 162
本章總結 175
作業與練習 175
第 11 章 BiLSTM-CRF 的命名實體識別 176
11.1 CRF 簡介 177
11.1.1 CRF 的基本概念 177
11.1.2 BiLSTM 的命名實體識別 177
11.1.3 CRF 的命名實體識別 178
11.2 BiLSTM-CRF 的原理 179
11.3 案例實現——BiLSTM-CRF 的中文命名實體識別 180
本章總結 189
作業與練習 189
第 4 部分 預訓練模型
第 12 章 ALBERT 的命名實體識別 192
12.1 預訓練模型簡介 193
12.1.1 預訓練模型的基本概念 193
12.1.2 經典的預訓練模型 193
12.2 預訓練模型 Hugging Face 195
12.2.1 Hugging Face 簡介 195
12.2.2 案例實現——使用 Hugging Face完成情感分析 196
12.3 案例實現——ALBERT 的中文命名實體識別 198
本章總結 207
作業與練習 207
第 13 章 Transformer 的文本分類 209
13.1 Transformer 概述 210
13.1.1 Encoder-Decoder 模型 210
13.1.2 Transformer 簡介 210
13.1.3 Transformer 總體結構 211
13.2 Self-Attention 機制 213
13.2.1 Self-Attention 機制的原理 213
13.2.2 Self-Attention 的計算過程 214
13.2.3 位置編碼和 Layer Normalization 215
13.3 案例實現——Transformer 的文本分類 217
本章總結 234
作業與練習 234
第 14 章 BERT 的文本相似度計算 236
14.1 文本相似度簡介 237
14.1.1 文本相似度的應用場景 237
14.1.2 文本相似度計算的方法 237
14.2 BERT 的文本相似度簡介 238
14.3 案例實現——BERT 的文本相似度計算 239
本章總結 251
作業與練習 251
第 15 章 ERNIE 的情感分析 253
15.1 情感分析簡介 254
15.1.1 情感分析的基本概念 254
15.1.2 情感分析的方法 254
15.2 ERNIE 簡介 255
15.3 案例實現——ERNIE 的中文情感分析 257
本章總結 271
作業與練習 272