阿裡雲天池大賽賽題解析 — 深度學習篇
天池平臺
- 出版商: 電子工業
- 出版日期: 2021-09-01
- 定價: $648
- 售價: 8.5 折 $551
- 語言: 簡體中文
- 頁數: 260
- 裝訂: 平裝
- ISBN: 7121417812
- ISBN-13: 9787121417818
-
相關分類:
DeepLearning
立即出貨(限量) (庫存=3)
買這商品的人也買了...
-
$500$390 -
$1,750$1,663 -
$1,900$1,805 -
$1,480$1,450 -
$650$553 -
$556阿裡雲天池大賽賽題解析 — 機器學習篇
-
$680$537 -
$297可解釋機器學習:黑盒模型可解釋性理解指南
-
$1,000$660 -
$680$537 -
$599$509 -
$690$538 -
$1,460$1,387 -
$828$787 -
$620$490 -
$276$262 -
$509機器學習算法競賽實戰
-
$880$748 -
$203電腦視覺 — Python + TensorFlow + Keras 深度學習實戰 (微課視頻版)
-
$374AI 遊戲開發和深度學習進階
-
$607深度強化學習:基於 Python 的理論及實踐
-
$403可解釋機器學習:模型、方法與實踐
-
$602隱私計算
-
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$2,835Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
相關主題
商品描述
本書聚焦深度學習算法建模及相關技術,選取醫療、視頻、工業三個非常有行業代表性的賽題:瑞金醫院MMC人工智能輔助構建知識圖譜、阿裡巴巴優酷視頻增強和超分辨率挑戰賽和布匹疵點智能識別,介紹賽題涉及的技術知識和選手的創新思路與模型,對賽題的解決方案從0到1層層拆解。 本書從經典行業案例出發,內容由淺入深、層層遞進,既可以作為專業開發者用書,也可以作為參考選手的實戰手冊。
作者簡介
阿里雲天池作為國內**的競賽平台和AI社區,自誕生以來就一直秉持著讓更多人公平獲得大數據的理念。也正因此,天池每場經典賽事沉澱的課題和數據集都會永久保留和開放。截至目前,天池平台已舉辦了超過200場來自真實業務場景的數據競賽,覆蓋政府、金融、交通、物流、航空、電力、醫療等多個領域。
目錄大綱
目 錄
賽題一 瑞金醫院MMC人工智能輔助構建知識圖譜
0 技術背景 3
0.1 技術現狀 3
0.2 實驗室介紹 3
1 賽題解讀 7
1.1 賽題背景 7
1.2 知識圖譜 7
1.2.1 知識圖譜的發展歷史 7
1.2.2 如何表達知識 9
1.2.3 如何構建知識圖譜 11
1.2.4 如何進行知識推理 13
1.3 數據介紹 15
1.3.1 初賽數據 16
1.3.2 複賽數據 17
1.4 評測指標 18
2 數據處理 19
2.1 自然語言處理基礎 19
2.1.1 詞向量 19
2.1.2 語言模型 20
2.1.3 自然語言處理中的深度學習 24
2.2 數據預處理 29
2.2.1 . txt文件 29
2.2.2 . ann文件 30
2.2.3 使用Python解析文件 32
3 初賽賽題――實體識別 35
3.1 實體識別任務 35
3.2 傳統機器學習方法 36
3.2.1 概率圖模型 36
3.2.2 隱馬爾可夫模型 38
3.2.3 最大熵馬爾可夫模型 39
3.2.4 條件隨機場模型 40
3.3 深度學習方法 41
3.3.1 雙向循環神經網絡 41
3.3.2 雙向循環神經網絡+條件隨機場模型 43
3.4 初賽方案 44
3.4.1 數據集構建 44
3.4.2 特徵工程 46
3.4.3 模型構建 47
4 複賽賽題――關係抽取 53
4.1 關係抽取任務 53
4.2 傳統方法 53
4.2.1 基於模板的抽取 53
4.2.2 基於依存句法的抽取 54
4.2.3 基於統計機器學習的抽取 55
4.3 深度學習方法 56
4.3.1 監督學習 56
4.3.2 半監督學習 57
4.4 複賽方案 59
4.4.1 數據集構建 59
4.4.2 特徵工程 62
4.4.3 模型構建 63
5 Neo4j存儲知識圖譜 69
5.1 Neo4j介紹 69
5.2 Neo4j配置 70
5.2.1 安裝 70
5.2.2 Web管理平台 71
5.2.3 Neo4j-shell 72
5.3 數據庫構建 72
5.3.1 準備工作 72
5.3.2 創建數據庫 72
5.3.3 事務 73
5.3.4 創建節點 73
5.3.5 創建關係 74
5.3.6 查詢 74
5.4 Cypher查詢 75
5.4.1 讀語句 76
5.4.2 寫語句 76
5.4.3 通用語句 78
6 賽題進階討論 80
6.1 數據標註方法 80
6.1.1 指針標註 80
6.1.2 片段排列 81
6.2 聯合抽取 82
6.2.1 共享參數 82
6.2.2 聯合標註 84
6.3 大規模預訓練語言模型 86
6.3.1 ELMo模型 86
6.3.2 GPT模型 87
6.3.3 BERT模型 89
6.3.4 使用BERT模型進行實體識別與關係抽取 90
賽題二 阿里巴巴優酷視頻增強和超分辨率挑戰賽
0 技術背景 95
0.1 業界應用 95
0.2 文娛行業面臨的畫質問題 95
0.3 實驗室介紹和技術手段 96
0.4 重點模塊 97
0.5 處理效果 98
1 賽題解讀 100
1.1 賽題背景 100
1.2 賽題目標 100
1.3 數據概覽 100
1.4 評估指標 101
1.5 解題思路 102
1.6 賽題模型 103
2 數據處理 105
2.1 視頻和圖像處理 105
2.1.1 圖像基本概念 105
2.1.2 視頻基本概念 106
2.1.3 視頻分幀 107
2.1.4 圖像處理 108
2.1.5 圖片合成視頻 110
2.2 工具包 111
2.2.1 OpenCV庫 111
2.2.2 FFmpeg庫 112
2.3 數據處理 112
2.3.1 安裝工具包 112
2.3.2 導入工具包 112
2.3.3 視頻轉圖片函數 112
2.3.4 讀取圖片並獲取大小 113
2.3.5 讀取圖片並進行灰度處理 114
2.3.6 分幀後的圖片灰度處理 114
2.3.7 圖片轉視頻函數 115
3 傳統插值方法 117
3.1 插值方法 117
3.1.1 插值方法的基本概念 117
3.1.2 插值原理 118
3.2 插值算法 118
3.2.1 最近鄰插值算法 119
3.2.2 雙線性插值算法 119
3.2.3 雙三次插值算法 120
3.3 幾種傳統插值算法結果對比 121
3.4 數據處理 122
3.4.1 導入工具包 122
3.4.2 讀取圖片 122
3.4.3 最近鄰插值算法 122
3.4.4 雙線性插值算法 123
3.4.5 基於4px×4px鄰域的三次插值算法 123
3.4.6 不同插值函數計算PSNR 123
3.4.7 傳統插值方法效果對比 123
3.4.8 Bicubic插值算法 124
4 深度插值方法 126
4.1 深度學習 126
4.1.1 卷積神經網絡 126
4.1.2 使用SRCNN實現超清分辨率 132
4.2 賽題實踐 132
4.2.1 導入工具包 132
4.2.2 讀取圖片 133
4.2.3 使用Bicubic插值放大至目標尺寸 133
4.2.4 實現SRCNN 133
4.2.5 SRCNN模型訓練 133
4.2.6 SRCNN模型驗證 135
4.2.7 SRCNN模型預測 135
4.2.8 保存圖片 135
5 深度學習方法改進 136
5.1 FSRCNN實現超清分辨率 136
5.2 ESPCN實現超清分辨率 138
5.3 賽題實踐 140
5.3.1 導入工具包 140
5.3.2 讀取圖片 140
5.3.3 FSRCNN 140
5.3.4 ESPCN 142
6 深度學習方法進階 145
6.1 GAN基本概念 145
6.1.1 GAN生成手寫數字 146
6.1.2 GAN訓練 147
6.1.3 GAN算法數學形式 148
6.2 CGAN 149
6.3 VGGNet 150
6.4 ResNet 153
6.5 SRGAN結構 156
6.5.1 SRGAN損失函數 157
6.5.2 SRGAN效果 157
6.6 SRGAN實現超清分辨率 158
6.6.1 導入工具包 158
6.6.2 讀取圖片 159
6.6.3 實現SRGAN 159
6.6.4 SRGAN模型訓練 163
6.6.5 SRGAN模型驗證 163
6.6.6 SRGAN模型預測 163
6.6.7 保存圖片 163
賽題三 布匹疵點智能識別
(2019廣東工業智造創新大賽 賽場一)
0 技術背景 167
0.1 行業背景 167
0.2 實驗室產品介紹 168
0.3 賽題背景 170
0.4 初賽數據示例 171
0.5 複賽數據示例 172
1 賽題解析 173
1.1 賽題背景分析 173
1.2 計算機視覺 174
1.2.1 計算機視覺簡介 174
1.2.2 計算機視覺發展歷史 175
1.2.3 計算機視覺方法 177
1.3 數據集介紹 178
1.4 賽題指標介紹 179
1.5 賽題初步分析 181
2 深度學習基礎 182
2.1 感知機 182
2.2 梯度下降法 184
2.3 多層感知機 186
2.4 反向傳播 189
2.5 深度神經網絡PyTorch實現 189
3 卷積神經網絡與數據處理 193
3.1 卷積運算與互相關運算 193
3.2 卷積神經網絡 195
3.3 卷積神經網絡的反向傳播算法 198
3.4 卷積神經網絡PyTorch實現 199
3.4.1 卷積神經網絡簡單實現示例 199
3.4.2 競賽數據預訓練模型 202
4 區域卷積神經網絡系列算法 204
4.1 目標檢測的基本概念 204
4.2 區域卷積神經網絡 205
4.3 Fast R-CNN算法 210
4.4 Faster R-CNN算法 214
4.5 目標檢測Faster R-CNN算法實戰 218
5 實例分割Mask R-CNN算法 226
5.1 實例分割 226
5.2 Mask R-CNN算法 226
5.3 PyTorch實現實例分割 230
6 賽題最優算法與提升思路 237
6.1 級聯區域卷積神經網絡 237
6.2 目標檢測賽題提升思路 239
6.3 mm-detection框架下的算法實現 241
參考文獻 242