深度匹配學習:面向搜索與推薦
徐君、何向南、李航
買這商品的人也買了...
相關主題
商品描述
本書從語義匹配的角度解決搜索引擎和推薦系統的關鍵痛點,為構建解決語義匹配問題的深度學習模型提供了通用框架。第1章概述搜索和推薦中的語義匹配問題,以及近年來的研究進展。第2章介紹傳統匹配模型,包括潛在空間模型。第3章介紹深度學習技術在構建匹配模型時的應用。第4章和第5章分別介紹用於搜索和推薦的深度匹配模型,並將當前的深度學習解決方案分為兩類:表示學習方法和匹配函數學習方法。第6章對全書內容做了總結,並為讀者指明進一步學習的方向。
本書適合對深度學習感興趣的各類讀者,包括相關專業的本科生、研究生、博士生,以及從事信息檢索、搜索引擎、推薦系統、計算廣告相關工作的軟件工程師。
作者簡介
【作者简介】
徐君
中国人民大学杰出特聘教授、博导。曾就职于微软亚洲研究院、华为技术有限公司诺亚方舟实验室和中国科学院计算技术研究所。主要研究方向包括信息检索、因果分析和数据挖掘等。发表论文100余篇,担任多个国际期刊的编委或副主编,主持多项国家项目。
何向南
中国科学技术大学教授、博导,国家高层次青年人才计划入选者。研究方向包括推荐系统、数据挖掘、因果推理等,在SIGIR、KDD、WWW等国际学术会议上发表论文100余篇,爱思唯尔中国高被引学者,阿里巴巴达摩院青橙奖获得者。担任多个国际期刊的编委或副主编,主持多项国家级项目,研究成果在多个商业公司的线上系统中获得应用,取得积极效果。
李航
字节跳动科技有限公司研究部门负责人。ACL会士、IEEE会士、ACM杰出科学家。京都大学毕业,东京大学博士。曾就职于NEC公司中央研究所、微软亚洲研究院、华为技术有限公司诺亚方舟实验室。主要研究方向包括自然语言处理、信息检索、机器学习、数据挖掘。《机器学习方法》等书作者。
【译者简介】
朱小虎
通用人工智能研究员、谷歌机器学习GDE、百度深度学习布道师、Foresight Institute Fellow。University AI和Center for Safe AGI的创始人。举办过多场国际性人工智能峰会和活动,曾受邀为多所国内高校制订人工智能学习规划和教授人工智能前沿课程,也曾为多家世界500强企业提供人工智能方面的战略布局建议及落地实施等方面的咨询建议。《深入浅出神经网络与深度学习》《人工智能缔造师》等书译者。
目錄大綱
第 1章 引論 1
1.1 搜索和推薦 1
1.2 從匹配的角度統一搜索和推薦 2
1.3 搜索中的不匹配問題 4
1.4 推薦系統中的不匹配問題 5
1.5 最新進展 7
1.6 關於本書 8
第 2章 傳統匹配模型 11
2.1 匹配學習 11
2.1.1 匹配函數 11
2.1.2 匹配函數的學習 12
2.2 搜索和推薦中的匹配模型 17
2.2.1 搜索中的匹配模型 18
2.2.2 推薦中的匹配模型 18
2.2.3 潛在空間中的匹配 19
2.3 搜索中的潛在空間模型 21
2.3.1 PLS 21
2.3.2 RMLS 22
2.3.3 SSI 23
2.4 推薦中的潛在空間模型 24
2.4.1 BMF 25
2.4.2 FISM 26
2.4.3 FM 27
2.5 延伸閱讀 28
第3章 用於匹配的深度學習 29
3.1 深度學習概述 29
3.1.1 深度神經網絡 29
3.1.2 表示學習 40
3.2 用於匹配的深度學習概述 46
3.2.1 深度匹配的通用框架 46
3.2.2 深度匹配的典型架構 48
3.2.3 深度匹配的設計原理 50
第4章 搜索中的深度匹配模型 53
4.1 基於表示學習的匹配模型 55
4.1.1 總體框架 55
4.1.2 FNN表示 56
4.1.3 CNN表示 58
4.1.4 RNN表示 63
4.1.5 無監督方法和弱監督方法下的表示學習 64
4.1.6 表示多模態的查詢和文檔 68
4.1.7 實驗結果 72
4.2 基於匹配函數學習的查詢–文檔匹配模型 73
4.2.1 總體框架 73
4.2.2 用匹配矩陣學習匹配函數 74
4.2.3 用註意力機制學習匹配函數 81
4.2.4 搜索中的匹配函數學習 86
4.2.5 實驗結果 91
4.3 討論和延伸閱讀 93
4.3.1 討論 93
4.3.2 延伸閱讀 95
第5章 推薦中的深度匹配模型 101
5.1 基於表示學習的匹配 102
5.1.1 從無序交互中學習表示 103
5.1.2 從順序交互中學習表示 108
5.1.3 從多模態內容中學習表示 118
5.1.4 從圖數據中學習表示 126
5.2 基於匹配函數學習的匹配 133
5.2.1 雙路匹配 134
5.2.2 多路匹配 140
5.3 延伸閱讀 145
5.3.1 論文 146
5.3.2 基準數據集 147
5.3.3 開源軟件庫 148
第6章 結論和未來研究方向 149
6.1 總結 149
6.2 其他任務中的匹配 150
6.3 開放問題和未來發展方向 151
術語縮寫表 155
參考文獻 157