買這商品的人也買了...
-
$288雲計算架構設計模式 -
實用 C 語言程式設計入門$490$417 -
$454Python 科學計算及實踐 -
$454SaaS 商業實戰:好模式如何變成好生意 -
$305機器學習入門與實戰 — 基於 scikit-learn 和 Keras -
$403大數據用戶行為畫像分析實操指南 -
銷售 AI 化!看資料科學家如何思考, 用 Python 打造能賺錢的機器學習模型$620$527 -
集成式學習:Python 實踐!整合全部技術,打造最強模型 (Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras)$750$638 -
$331集成學習入門與實戰:原理、算法與應用 -
$270Python 數據結構和算法實戰, 2/e (Hands-On Data Structures and Algorithms with Python: Write complex and powerful code using the latest features of Python 3.7, 2/e) -
網絡安全技術與實訓, 5/e (微課版)$359$341 -
模式分類(原書第2版·典藏版)$894$849 -
$611智能計算:原理與實踐 -
$505聯邦學習:算法詳解與系統實現 -
$236數據結構(Python版) -
$420精通 Microsoft 365 雲計算管理 SharePoint Online 篇 -
$199算法深潛:勇敢者的Python探險 -
$331數據結構(Python版) -
$662Amazon Web Services 雲計算實戰, 2/e -
$469精通 Transformer : 從零開始構建最先進的 NLP 模型 -
$658高級 Python 核心編程開啟精通 Python 編程世界之旅 -
$505python核心編程:從入門到實踐:學與練 -
$560Python 開發實例大全 上捲 -
$560Python 開發實例大全 下捲 -
$564前端工程化 : 基於 Vue.js 3.0 的設計與實踐
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
VIP 95折
深度學習:基礎與概念$1,128$1,072 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
《商業化推薦系統服務應用實戰》主要從企業的商業模式出發,
結合作者對企業生命週期發展階段的分析和判斷,
對如何設計與實施推薦系統服務的商業化過程和相關業務實踐進行介紹和分享。
本書涵蓋了從推薦服務的商業創新模式到需求與解決方案管理、商業化版本發布、
工作流支持以及績效KPI體系設計和跨職能團隊的溝通技術等方面的內容,
著重體現了現代商業化產品生態中,跨職能團隊的密切協作與商業化服務的可靠交付的價值。
《商業化推薦系統服務應用實戰》適合軟件創新型企業的團隊領導者、決策者閱讀,
同時對希望通過商業智能技術對企業進行轉型的領導者、執行者也有指導作用。
作者簡介
張樂,SAP高級技術專家,有13年的IT從業及產品開發經驗。具有豐富的數據產品業務分析、研發設計、質量測試評估、部署發布的產品全流程經驗。曾從事多款數據庫和數據倉庫產品的設計研發和質量測評,是多項相關國際專利的合著者。目前主要研究方向為原生雲數據庫和企業智能數據產品質量指標體系設計和質量評估優化。
目錄大綱
前言
第1章 商業化推薦服務/
1.1 從推薦開始的商業創新/
1.1.1 商業模式識別與推薦服務/
1.1.2 企業生命週期視角下的推薦服務/
1.2 商業化推薦系統服務的企業驅動力/
1.3 小結/
第2章 商業化推薦服務的需求管理/
2.1 需求的出發點和分析/
2.2 需求的演進:伴隨業務更新的變更/
2.3 小結/
第3章 商業化推薦服務解決方案/
3.1 從提供服務到解決方案的進化之路/
3.2 深入客戶業務的解決方案/
3.2.1 客戶需要的答案/
3.2.2 回答問題:來自解決方案的業務坐標/
3.2.3 推薦服務的業務交付/
3.3 推薦服務使用的技術/
3.3.1 選擇正確的方向/
3.3.2 推薦服務中的算法模型/
3.3.3 推薦服務的上下文環境/
3.3.4 推薦服務的冷啟動/
3.4 小結/
第4章 服務建模與商業化發布/
4.1 使用版本控制的建模體系/
4.2 商業化API與定價/
4.2.1 選擇:設計優先還是API優先/
4.2.2 機器學習服務API設計/
4.2.3 商業化API定價策略/
4.3 使用SDK向客戶的端到端交付/
4.3.1 SDK架構設計/
4.3.2 SDK商業化定價/
4.4 小結/
第5章 支撐商業化推薦服務的高效工作流/
5.1 構建穩定可靠的流水線/
5.2 工作流的可持續性設計/
5.2.1 工作流中的參數評估/
5.2.2 流水線中的模型版本管理/
5.3 小結/
第6章 商業化推薦服務的績效KPI體系設計/
6.1 競技場中的對手:競品分析/
6.2 讓服務運營交付保持狀態:績效KPI指標體系/
6.3 小結/
第7章 商業化高級技能:跨職能溝通技術/
7.1 圍繞商業價值的技術營銷/
7.2 在需求管理中有效溝通/
7.3 讓團隊在問題的解決中成長/
7.4 服務上線運營中的跨職能溝通/
7.5 小結/
第8章 商業化推薦服務案例:餐飲業務整合推薦服務/
8.1 企業的難題/
8.2 拿出解決方案/
8.3 使用正確合理的推薦系統提升商業價值/
8.4 小結/
附錄/
附錄A 機器學習相關重要論文/
附錄B 績效KPI體系設計與通用示例/
