面向資產管理者的機器學習 Machine Learning for Asset Managers
Marcos M. López de Prado
- 出版商: 機械工業
- 出版日期: 2022-02-01
- 定價: $528
- 售價: 8.5 折 $449
- 語言: 簡體中文
- 頁數: 248
- 裝訂: 平裝
- ISBN: 7111699483
- ISBN-13: 9787111699484
-
相關分類:
Machine Learning
- 此書翻譯自: Machine Learning for Asset Managers
立即出貨
買這商品的人也買了...
-
Fundamentals of Power Electronics, 2/e (Hardcover)$1,250$1,225 -
深入理解計算機系統, 3/e (Computer Systems: A Programmer's Perspective, 3/e)$834$792 -
量子霸權(Quantum Supermacy)世界大戰開打:量子電腦真的來了$600$474 -
打造期權自動理財術$500$490 -
Mathematics for Machine Learning (Paperback)$1,520$1,490 -
C++ 語言的設計和演化 (The Design and Evolution of C++)$594$564 -
小輕快跨平台:王的編輯器 Visual Studio Code 聖經$880$695 -
AI世代 -- 高中生也能輕鬆搞懂的運算思維與演算法 -- 使用 C語言$450$351 -
$505機器意識:人工智能的終極挑戰 -
資料密集型應用系統設計 (Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems)$980$774 -
CQRS 命令查詢職責分離模式 (Command Query Responsibility Segregation)$500$390 -
超大流量系統解決方案 : 大型網站架構師的經驗分享$690$538 -
$713Go 語言設計與實現 -
ACCELERATE:精益軟體與 DevOps 背後的科學 (Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations)$499$424 -
$1,423機器學習:貝葉斯和優化方法, 2/e (Machine Learning : A Bayesian and Optimization Perspective, 2/e) -
金融機器學習與資料科學藍圖 (Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python)$780$616 -
$232量化投資實務 -
機器學習聖經:最完整的統計學習方法$880$695 -
量子技術:驅動計算、人工智慧、通訊、測量的未來革命$450$351 -
這場遊戲不是夢,全面進化的量子文明時代$450$351 -
FinTech 金融科技名詞速查字典:全面即懂人工智慧、數位貨幣、區塊鏈、支付科技及網路安全$420$357 -
量子科技入門$420$378 -
機器學習在算法交易中的應用, 2/e$948$901 -
$516大規模語言模型:從理論到實踐 -
$454RISC-V 開放架構設計之道
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書面向廣大資產管理者和各類研究人員,基於機器學習和人工智能,
指明從一個投資理念和理論到成功的投資策略具體實施的量化途徑。
作者認為一個缺乏理論依據的投資策略很可能是錯誤的。
為此,資產管理者應致力於發展理論,而不僅是回測潛在的交易規則。
本書就是從幫助資產管理者發現經濟和金融理論的角度出發,介紹機器學習的工具。
機器學習不是一個黑匣子,也不一定會過擬合。
機器學習的工具與經典統計方法是互補關係而不是替代關係。
本書認為機器學習的一些優點包括:註重樣本外的可預測性,而不是樣本內的方差判斷;
使用計算方法避免依賴一些(或許不切實際的)假設;能夠“學習”複雜的規範,
包括高維空間中的非線性、分層和非連續的交互效應;
能夠將變量搜索與設定搜索分離,並能很好地防止多重線性和其他替代效應。
作者簡介
馬科斯·M.洛佩斯·德普拉多,美國勞倫斯·伯克利國家實驗室研究員、康奈爾大學電氣與計算機工程學院教授,擁有金融經濟學和數學金融學博士學位。正確積極技術公司(TPT)首席信息官,阿布紮比投資局(ADIA)量化研究與開發業務的全球負責人。20多年來致力於利用機器學習算法和超級計算機的開發來制定投資策略的研究工作。撰寫了數十篇頗具影響力的機器學習和算法研究的論文,著有《金融機器學習》等書。因其卓越的研究,2019年被《投資組合管理雜誌》評為“年度量化分析師”。
目錄大綱
中文版序
1 引 言
1.1 動機
1.2 理論很重要
1.3 如何科學地運用機器學習
1.4 過擬合的兩種類型
1.5 提綱
1.6 受眾
1.7 關於金融機器學習的五個常見誤解
1.8 金融研究的未來
1.9 常見問題
1.10 結論
1.11 習題
2 降噪和降調
2.1 動機
2.2 Marcenko-Pastur定理
2.3 帶信號的隨機矩陣
2.4 擬合Marcenko-Pastur分佈
2.5 降噪
2.6 降調
2.7 實驗結果
2.8 結論
2.9 習題
3 距離度量
3.1 動機
3.2 基於相關性的度量
3.3 邊際熵和聯合熵
3.4 條件熵
3.5 Kullback-Leibler散度
3.6 交叉熵
3.7 互信息
3.8 差異信息
3.9 離散化
3.10 兩個劃分之間的距離
3.11 實驗結果
3.12 結論
3.13 習題
4 #優聚類
4.1 動機
4.2 相似度矩陣
4.3 聚類的類型
4.4 類集的個數
4.5 實驗結果
4.6 結論
4.7 習題
5 金融標註
5.1 動機
5.2 固定區間法
5.3 三重阻礙法
5.4 趨勢掃描法
5.5 元標註
5.6 實驗結果
5.7 結論
5.8 習題
6 特徵重要性分析
6.1 動機
6.2 p值
6.3 變量重要性
6.4 概率加權準確度
6.5 替代效應
6.6 實驗結果
6.7 結論
6.8 習題
7 組合構建
7.1 動機
7.2 凸組合優化
7.3 條件數
7.4 Markowitz的詛咒
7.5 信號作為協方差不穩定性的來源
7.6 嵌套聚類優化算法
7.7 實驗結果
7.8 結論
7.9 習題
8 測試集過擬合
8.1 動機
8.2 查準率和召回率
8.3 重複測試下的查準率和召回率
8.4 夏普比率
8.5 錯誤策略定理
8.6 實驗結果
8.7 收縮夏普比率
8.8 家族錯誤率
8.9 結論
8.10 習題
附錄A 合成數據測試
附錄B 錯誤策略定理的證明
參考書目
參考文獻
