凸優化:算法與復雜性 Convex Optimization: Algorithms and Complexity
Sébastien Bubeck
- 出版商: 機械工業
- 出版日期: 2021-06-01
- 定價: $354
- 售價: 8.5 折 $301
- 語言: 簡體中文
- 頁數: 136
- 裝訂: 平裝
- ISBN: 711168351X
- ISBN-13: 9787111683513
-
相關分類:
工程數學 Engineering-mathematics
- 此書翻譯自: Convex Optimization: Algorithms and Complexity
立即出貨
買這商品的人也買了...
-
Convex Optimization (Hardcover)$1,860$1,823 -
離散時間訊號處理 (Discrete-Time Signal Processing, 3/e)$800$760 -
$594PCI Express 體系結構導讀 -
$468無線通信中的空時與協作信號處理 -
$348通信信號調製識別-原理與演算法 -
Compilers : Principles, Techniques, and Tools, 2/e (NIE-Paperback)$1,800$1,764 -
機器人學導論, 4/e (Introduction to Robotics: Mechanics and Control, 4/e)$474$450 -
$414非高斯特殊噪聲乾擾的抑制與消除 — 從經典信號處理到壓縮感知方法 -
網頁應用程式設計|使用 Node 和 Express, 2/e (Web Development with Node and Express, 2/e)$580$458 -
量子信息論$894$849 -
$659時間序列分析及其應用:基於 R語言實例, 4/e (Time Series Analysis and Its Applications: With R Examples, 4/e) -
Reinforcement Learning|強化學習深度解析 (繁體中文版) (Reinforcement Learning: An Introduction, 2/e)$1,200$948 -
$305Python Web 項目開發實戰教程 (Flask版)(微課版) -
$599Python 編程實戰 : 妙趣橫生的項目之旅 (Impractical Python Projects: Playful Programming Activities to Make You Smarter) -
Python 密碼學編程$479$455 -
$458用 Python 編程和實踐!數學教科書 -
$230矩陣分析 -
$408Python機器學習 -
$479Python超實用 你的Python實踐工具書(全彩印刷) -
$417財務報表分析與商業決策 -
$473Jupyter 金融應用 從入門到實踐 -
深入淺出 Pandas:利用 Python 進行數據處理與分析$594$564 -
最優化導論, 4/e (An Introduction to Optimization, 4/e)$534$507 -
跟著 Docker 隊長,修練 22天就精通 - 搭配 20小時作者線上教學,無縫接軌 Microservices、Cloud-native、Serverless、DevOps 開發架構$880$695 -
$207在線凸優化:概念、架構及核心算法
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
79折
$564CUDA 並行編程與性能優化 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
VIP 95折
高薪Offer 簡歷、面試、談薪完全攻略$414$393 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
79折
$469GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
高薪Offer 簡歷、面試、談薪完全攻略$414$393 -
VIP 95折
軟件系統優化$534$507 -
79折
$469GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797 -
VIP 95折
ZBrush遊戲角色設計(第2版)$479$455
相關主題
商品描述
本書介紹了凸優化中的主要復雜性定理及其相應的算法。
從黑箱優化的基本理論出發,內容材料是朝著結構優化和隨機優化的新進展。
我們對黑箱優化的介紹,深受Nesterov的開創性著作和Nemirovski講稿的影響,
包括對切割平面方法的分析,以及(加速)梯度下降方案。
我們還特別關註非歐幾裏德的情況(
相關算法包括Frank Wolfe、鏡像下降和對偶平均法),並討論它們在機器中的相關性學習。
我們慢慢的介紹了FISTA(優化一個光滑項和一個簡單的非光滑項的和)、
鞍點鏡像代理(Nemirovski平滑替代Nesterov的光滑)和一個對內點方法的簡明描述。
在隨機優化中,我們討論了隨機梯度下降、小批量、隨機坐標下降和次線性算法。
我們還簡單地討論了組合問題的凸鬆弛和隨機性對取整(四捨五入)解的使用,以及基於隨機遊動的方法。
作者簡介
Sebastien Bubeck
是微軟Redmond研究院理論組的首席研究員,曾擔任COLT 2013、COLT 2014的聯席主席,
NIPS 2012、NIPS 2014、NIPS 2016、COLT 201 3、COLT 201 4 、COLT 201 5、COLT 201 6、
ICML 201 5、ICML 201 6、ALT2013、ALT 2014的項目委員會成員,也是COLT的指導委員會成員。
其研究興趣包括:機器學習、凸優化、統計網絡分析、隨機圖和隨機矩陣,
以及信息論在學習、優化和概率中的應用。
目錄大綱
目錄
譯者序
致謝
第1章緒論
1.1機器學習中的若乾凸優化問題
1.2凸性的基本性質
1.3凸性的作用
1.4黑箱模型
1.5結構性優化
1.6結果的概述和免責聲明
第2章有限維的凸優化
2.1重心法
2.2橢球法
2.3 Vaidya割平面法
2.3.1體積障礙
2.3.2 Vaidya算法
2.3.3 Vaidya方法分析
2.3.4限制條件和體積障礙
2.4共軛梯度
第3章維度無關的凸優化
3.1 Lipschitz函數的投影次梯度下降
3.2光滑函數的梯度下降
3.3條件梯度下降
3.4強凸性
3.4.1強凸函數和upschitz函數
3.4.2強凸光滑函數
3.5下限
3.6幾何下降
3.6.1熱身賽:梯度下降的幾何學替代方案
3.6.2加速度
3.6.3幾何下降法
3.7 Nesterov加速梯度下降
3.7.1光滑強凸情況
3.7.2光滑的情況
第4章非歐氏空間幾乎維度無關的凸優化
4.1鏡像映射
4.2鏡像下降
4.3鏡像下降的標準設置
4.4惰性鏡像下降
4.5鏡像代理
4.6關於MD、DA和MP的向量場觀點
第5章超越黑箱模型
5.1光滑項與簡單非光滑項之和
5.2非光滑函數的光滑鞍點表示
5.2.1鞍點計算
5.2.2鞍點鏡像下降
5.2.3鞍點鏡像代理
5.2.4應用
5.3內點法
5.3.1障礙法
5.3.2牛頓法的傳統分析
5.3.3自和諧函數
5.3.4 v一自和諧障礙
5.3.5路徑跟蹤方案
5.3 .6線性規劃和半定規劃的內點法
第6章凸優化與隨機性
6.1非光滑隨機優化
6.2光滑隨機優化與小批量SGD
6.3光滑函數與強凸函數的和
6.4隨機坐標下降
6.4.1坐標平滑優化的RCD算法
6.4.2用於光滑和強凸優化的RCD
6.5鞍點的隨機加速
6.6凸鬆弛與隨機取整
6.7基於隨機遊動的方法
參考文獻
