人人可懂的深度學習 Deep Learning
John D. Kelleher 趙啟軍譯
- 出版商: 機械工業
- 出版日期: 2021-05-01
- 定價: $414
- 售價: 7.9 折 $327
- 語言: 簡體中文
- 頁數: 220
- 裝訂: 平裝
- ISBN: 7111680103
- ISBN-13: 9787111680109
-
相關分類:
DeepLearning
- 此書翻譯自: Deep Learning
立即出貨
買這商品的人也買了...
-
圖像處理與圖像分析基礎 (C/C++語言版)$354$336
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
VIP 95折
深入淺出 SSD 測試 : 固態存儲測試流程 方法與工具$594$564 -
VIP 95折
MCP 開發從入門到實戰$515$489 -
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
RISC-V 架構 DSP 處理器設計$534$507 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
85折
$454RAG 實踐權威指南:構建精準、高效大模型之道 -
VIP 95折
CUDA 並行編程與性能優化$714$678 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
VIP 95折
大模型驅動的具身智能 架構,設計與實現$534$507 -
VIP 95折
納米級CMOS VLSI電路(可制造性設計)$474$450 -
VIP 95折
Manus應用與AI Agent設計指南:從入門到精通$359$341 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
VIP 95折
芯片的較量 (日美半導體風雲)$414$393 -
VIP 95折
Manus AI 智能體從入門到精通$294$279 -
87折
$981深度學習:基礎與概念 -
85折
$505GitHub Copilot 編程指南 -
87折
$469Cursor 與 Copilot 開發實戰 : 讓煩瑣編程智能化 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
Verilog HDL 計算機網絡典型電路算法設計與實現$354$336 -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673
簡體館年度書展|現貨2書79折3書75折 詳見活動內容 »
-
85折
$806Linux x64 匯編語言編程 -
VIP 95折
MCP 極簡開發 : 輕鬆打造高效智能體$479$455 -
VIP 95折
硬件系統模糊測試:技術揭秘與案例剖析$419$398 -
VIP 95折
生成式視覺模型原理與實踐$288$274 -
87折
$459AI大模型:賦能通信產業 -
VIP 95折
科學預測——預見科學之美$408$388 -
VIP 95折
Processing創意編程入門:從編程原理到項目案例$299$284 -
87折
$360高薪Offer 簡歷、面試、談薪完全攻略 -
VIP 95折
軟件系統優化$534$507 -
85折
$505GitHub Copilot 編程指南 -
85折
$551C#核心編程200例(視頻課程+全套源程序) -
VIP 95折
SAAS + AI 架構實戰:業務解析、架構設計、AI 應用$708$673 -
VIP 95折
深入淺出 Docker, 2/e$419$398 -
85折
$658Unity 特效制作:Shader Graph 案例精講 -
79折
$275零基礎玩轉國產大模型DeepSeek -
VIP 95折
人工智能大模型:機器學習基礎$774$735 -
VIP 95折
RAG 極簡入門:原理與實踐$419$398 -
VIP 95折
大模型實戰 : 從零實現 RAG 與 Agent 系統$419$398 -
VIP 95折
算法趣學(第2版)$348$331 -
VIP 95折
大模型理論與實踐——打造行業智能助手$354$336 -
VIP 95折
大模型應用開發 RAG 實戰課$599$569 -
85折
$509生成式人工智能 (基於 PyTorch 實現) -
VIP 95折
機器人抓取力學$894$849 -
VIP 95折
集成電路版圖設計從入門到精通$474$450 -
VIP 95折
Java 學習筆記, 6/e$839$797
相關主題
商品描述
本書將深度學習技術的發展歷史、現狀和未來向讀者娓娓道來,以深入淺出的方式介紹了深度學習的核心思想和關鍵技術,
非常適合尚不具備專業背景的讀者學習和瞭解什麼是深度學習技術,如何進行深度學習,
深度學習適合哪些任務,深度學習還有哪些不足。
本書對深度學習中的一些關鍵問題(如過擬合和梯度消失)、核心技術(如反向傳播和梯度下降)、
典型模型(如捲積神經網絡和循環神經網絡)的講解簡潔而不失深刻,
對深度學習技術未來發展的討論很有啟發性,專業人士也能從中獲益。
作者簡介
John D.Kelleher
現為愛爾蘭都柏林理工大學(Technological University Dublin)信息、通信和娛樂研究所教授和學術領導人。
專業領域包括機器學習、數據科學、自然語言處理和人工智能。
曾在多個不同的學術和研究機構工作,包括都柏林城市大學(Dublin City University)、
歐洲媒體實驗室(Media Lab Europe)和德國人工智能研究中心(DFKI)。
他在MIT出版社出版了三本機器學習和數據科學方面的著作,除了本書之外,
另外兩本是《深度學習》(Deep Learning)和《數據科學》(Data Science)。
目錄大綱
目錄
譯者序
前言
致謝
第1章┆深度學習概述/ 1
1.1人工智能、機器學習和深度學習/4
1.2什麼是機器學習/10
1.3機器學習為何如此困難/14
1.4機器學習的關鍵要素/18
1.5有監督學習、無監督學習和強化學習/21
1.6深度學習為何如此成功/24
1.7本章小結及本書內容安排/27
第2章┆預備知識/ 31
2.1什麼是數學模型/32
2.2含有多個輸入的線性模型/35
2.3線性模型的參數設置/37
2.4從數據中學習模型參數/39
2.5模型的組合/44
2.6輸入空間、權重空間和激活空間/46
2.7本章小結/49
第3章┆神經網絡:深度學習的基石/ 51
3.1人工神經網絡/53
3.2人工神經元是如何處理信息的/56
3.3為什麼需要激活函數/61
3.4神經元參數的變化如何影響神經元的行為/65
3.5使用GPU加速神經網絡的訓練/73
3.6本章小結/77
第4章┆深度學習簡史/ 80
4.1早期研究:閾值邏輯單元/83
4.2連接主義:多層感知機/98
4.3深度學***/114
4.4本章小結/124
第5章┆捲積神經網絡和循環神經網絡/ 126
5.1捲積神經網絡/127
5.2循環神經網絡/135
第6章┆神經網絡的訓練/ 147
6.1梯度下降/149
6.2使用反向傳播訓練神經網絡/165
第7章┆深度學習的未來/ 181
7.1推動算法革新的大數據/183
7.2新模型的提出/187
7.3新形式的硬件/189
7.4可解釋性問題/192
7.5結語/ 196
術語表/ 197
參考文獻/ 203
延伸閱讀/ 208
