Bayesian Analysis of Failure Time Data Using P-Splines (BestMasters)

Matthias Kaeding

  • 出版商: Springer
  • 出版日期: 2015-01-12
  • 售價: $2,380
  • 貴賓價: 9.5$2,261
  • 語言: 英文
  • 頁數: 120
  • 裝訂: Paperback
  • ISBN: 3658083921
  • ISBN-13: 9783658083922
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.

商品描述(中文翻譯)

Matthias Kaeding 討論了用於分析離散和連續失敗時間的貝葉斯方法,其中時間和/或協變量的影響是通過 P-splines 和額外的基本函數展開來建模,這使得可以用更一般的函數來替代線性效應。這些模型的 MCMC 方法論在一個統一的框架中呈現並應用於數據集。作者將現有的分組 Cox 模型和區間審查下的分段指數模型的算法與數據增強步驟相結合,以便於應用。作者顯示,所得到的 Gibbs 取樣器對於分組 Cox 模型運作良好,而對於分段指數模型則僅僅是足夠的。