Foundations of Rule Learning (Cognitive Technologies)
暫譯: 規則學習的基礎(認知技術)

Johannes Fürnkranz

  • 出版商: Springer
  • 出版日期: 2014-12-14
  • 售價: $3,170
  • 貴賓價: 9.5$3,012
  • 語言: 英文
  • 頁數: 352
  • 裝訂: Paperback
  • ISBN: 3642430465
  • ISBN-13: 9783642430466
  • 已絕版

買這商品的人也買了...

相關主題

商品描述

Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.

The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.

商品描述(中文翻譯)

規則是最清晰、最深入探討且最易理解的知識表達形式,對於資料探勘特別重要,因為它們在人工與機器可理解性之間提供了最佳的平衡。本書介紹了在傳統機器學習和現代資料探勘中研究的規則學習基本原理。它引入了一種基於特徵的觀點,作為命題和關係規則學習的統一框架,從而彌合了屬性-值學習和歸納邏輯程式設計之間的差距,並全面涵蓋了規則學習中最重要的元素。

本書可作為機器學習的教科書,也可作為歸納規則學習領域研究的綜合參考。因此,它的目標讀者包括學生、研究人員和規則學習算法的開發者,充分廣泛且深入地呈現基本的規則學習概念,使讀者能夠理解、開發並將規則學習技術應用於現實世界的數據。