Computing Statistics under Interval and Fuzzy Uncertainty: Applications to Computer Science and Engineering (Studies in Computational Intelligence)

Hung T. Nguyen, Vladik Kreinovich, Berlin Wu, Gang Xiang

相關主題

商品描述

In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area.

 

Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy.

 

This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.

商品描述(中文翻譯)

在許多實際情況中,我們對描述一群物件的統計數據感興趣:例如,某個地區人們的平均身高。

大多數用於估計這些統計數據的演算法假設樣本值是精確的。實際上,樣本值來自測量,而測量從來不會是絕對準確的。有時,我們知道測量不準確性的確切機率分佈,但通常我們只知道這種不準確性的上限。在這種情況下,我們面臨區間不確定性:例如,如果測量值為1.0,而不準確性被限制在0.1,那麼該量的實際(未知)值可以在0.9到1.1之間的任何地方。在其他情況下,這些值是專家估計的,我們對估計不準確性只有模糊的信息。

本書展示了如何在這種區間和模糊不確定性下計算統計數據。所得到的方法應用於計算機科學(不同處理器的最佳排程)、資訊技術(維護隱私)、計算機工程(計算機晶片設計),以及地球科學、雷達成像和結構力學中的數據處理。