買這商品的人也買了...
-
$880$695 -
$880$581 -
$420$357 -
$1,200$948 -
$990$891 -
$2,400$2,352 -
$600$480 -
$980$774 -
$620$527 -
$780$663 -
$650$553 -
$520$442 -
$690$621 -
$680$537 -
$750$638 -
$900$855 -
$820$648 -
$580$493 -
$890$757 -
$490$417 -
$480$379 -
$490$417 -
$750$638 -
$850$723 -
$950$808
相關主題
商品描述
Description
This is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. Gallium nitride and its related compounds enable the fabrication of highly efficient light-emitting diodes and lasers for a broad spectrum of wavelengths, ranging from red through yellow and green to blue and ultraviolet. Since the breakthrough demonstration of blue laser diodes by Shuji Nakamura in 1995, this field has experienced tremendous growth worldwide. Various applications can be seen in our everyday life, from green traffic lights to full-color outdoor displays to high-definition DVD players. In recent years, nitride device modeling and simulation has gained importance and advanced software tools are emerging. Similar developments occurred in the past with other semiconductors such as silicon, where computer simulation is now an integral part of device development and fabrication.
This book presents a review of modern device concepts and models, written by leading researchers in the field. It is intended for scientists and device engineers who are interested in employing computer simulation for nitride device design and analysis.
Table of Contents
Preface.List of Contributors.
Part 1 Material Properties.
1 Introduction (Joachim Piprek).
1.1 A Brief History.
1.2 Unique Material Properties.
1.3 Thermal Parameters.
References.
2 Electron Bandstructure Parameters (Igor Vurgaftman and Jerry R. Meyer).
2.1 Introduction.
2.2 Band Structure Models.
2.3 Band Parameters.
2.4 Conclusions.
References.
3 Spontaneous and Piezoelectric Polarization: Basic Theory vs. Practical Recipes (Fabio Bernardini).
3.1 Why Spontaneous Polarization in III-V Nitrides?
3.2 Theoretical Prediction of Polarization Properties in AlN, GaN and InN.
3.3 Piezoelectric and Pyroelectric Effects in III-V Nitrides Nanostructures.
3.4 Polarization Properties in Ternary and Quaternary Alloys.
3.5 Orientational Dependence of Polarization.
References.
4 Transport Parameters for Electrons and Holes (Enrico Bellotti and Francesco Bertazzi).
4.1 Introduction.
4.2 Numerical Simulation Model.
4.3 Analytical Models for the Transport Parameters.
4.4 GaN Transport Parameters.
4.5 AlN Transport Parameters.
4.6 InN Transport Parameters.
4.7 Conclusions.
References.
5 Optical Constants of Bulk Nitrides (Rüdiger Goldhahn, Carsten Buchheim, Pascal Schley, Andreas Theo Winzer, and Hans Wenzel).
5.1 Introduction.
5.2 Dielectric Function and Band Structure.
5.3 Experimental Results.
5.4 Modeling of the Dielectric Function.
References.
6 Intersubband Absorption in AlGaN/GaN Quantum Wells (Sulakshana Gunna, Francesco Bertazzi, Roberto Paiella, and Enrico Bellotti).
6.1 Introduction.
6.2 Theoretical Model.
6.3 Numerical Implementation.
6.4 Absorption Energy in AlGaN-GaN MQWs.
6.5 Conclusions.
References.
7 Interband Transitions in InGaN Quantum Wells (Jörg Hader, Jerome V. Moloney, Angela Thränhardt, and Stephan W. Koch).
7.1 Introduction.
7.2 Theory.
7.3 Theory–Experiment Gain Comparison.
7.4 Absorption/Gain.
7.5 Spontaneous Emission.
7.6 Auger Recombinations.
7.7 Internal Field Effects.
7.8 Summary.
References.
8 Electronic and Optical Properties of GaN-based Quantum Wells with (1010) Crystal Orientation (Seoung-Hwan Park and Shun-Lien Chuang).
8.1 Introduction.
8.2 Theory.
8.2.1 Non-Markovian gain model with many-body effects.
8.3 Results and Discussion.
8.4 Summary.
References.
9 Carrier Scattering in Quantum-Dot Systems (Frank Jahnke).
9.1 Introduction.
9.2 Scattering Due to Carrier–Carrier Coulomb Interaction.
9.3 Scattering Due to Carrier–Phonon Interaction.
9.4 Summary and Outlook.
References.
Part 2 Devices.
10 AlGaN/GaN High Electron Mobility Transistors (Tomás Palacios and Umesh K. Mishra).
10.1 Introduction.
10.2 Physics-based Simulations.
10.3 Conclusions.
References.
11 Intersubband Optical Switches for Optical Communications (Nobuo Suzuki).
11.1 Introduction.
11.2 Physics of ISBT in Nitride MQWs.
11.3 Calculation of Absorption Spectra.
11.4 FDTD Simulator for GaN/AlGaN ISBT Switches.
References.
12 Intersubband Electroabsorption Modulator (Petter Holmström).
12.1 Introduction.
12.2 Modulator Structure.
12.3 Model.
12.4 Results.
12.5 Summary.
References.
13 Ultraviolet Light-Emitting Diodes (Yen-Kuang Kuo, Sheng-Horng Yen, and Jun-Rong Chen).
13.1 Introduction.
13.2 Device Structure.
13.3 Physical Models and Parameters.
13.4 Comparison Between Simulated and Experimental Results.
13.5 Performance Optimization.
13.6 Conclusion.
References.
14 Visible Light-Emitting Diodes (Sergey Yu. Karpov).
14.1 Introduction.
14.2 Simulation Approach and Materials Properties.
14.3 Device Analysis.
14.4 Novel LED Structures.
14.5 Conclusion.
References.
15 Simulation of LEDs with Phosphorescent Media for the Generation of White Light (Norbert Linder, Dominik Eisert, Frank Jermann, and Dirk Berben).
15.1 Introduction.
15.2 Requirements for a Conversion LED Model.
15.3 Color Metrics for Conversion LEDs.
15.4 Phosphor Model.
15.5 Simulation Examples.
15.6 Conclusions.
References.
16 Fundamental Characteristics of Edge-Emitting Lasers (Gen-ichi Hatakoshi).
16.1 Introduction.
16.2 Basic Equations for the Device Simulation.
16.3 Simulation for Electrical Characteristics and Carrier Overflow Analysis.
16.4 Perpendicular TransverseMode and Beam Quality Analysis.
16.5 Thermal Analysis.
16.6 Conclusions.
References.
17 Resonant Internal Transverse-Mode Coupling in InGaN/GaN/AlGaN Lasers (Gennady A. Smolyakov and Marek Osiński).
17.1 Introduction.
17.2 Internal Mode Coupling and the Concept of “Ghost Modes.”
17.3 Device Structure and Material Parameters.
17.4 Calculation Technique.
17.5 Results of Calculations.
17.6 Discussion and Conclusions.
References.
18 Optical Properties of Edge-Emitting Lasers: Measurement and Simulation (Ulrich T. Schwarz and Bernd Witzigmann).
18.1 Introduction.
18.2 Waveguide Mode Stability.
18.3 Optical Waveguide Loss.
18.4 Mode Gain Analysis.
18.5 Conclusion.
References.
19 Electronic Properties of InGaN/GaN Vertical-Cavity Lasers (Joachim Piprek, Zhan-Ming Li, Robert Farrell, Steven P. DenBaars, and Shuji Nakamura).
19.1 Introduction to Vertical-Cavity Lasers.
19.2 GaN-based VCSEL Structure.
19.3 Theoretical Models and Material Parameters.
19.4 Simulation Results and Device Analysis.
19.5 Summary.
References.
20 Optical Design of Vertical-Cavity Lasers (Wlodzimierz Nakwaski, Tomasz Czyszanowski, and Robert P. Sarzala).
20.1 Introduction.
20.2 The GaN VCSEL Structure.
20.3 The Scalar Optical Approach.
20.4 The Vectorial Optical Approach.
20.5 The Self-consistent Calculation Algorithm.
20.6 Simulation Results.
20.7 Discussion and Conclusions.
References.
21 GaN Nanowire Lasers (Alexey V. Maslov and Cun-Zheng Ning).
21.1 Introduction.
21.2 Nanowire Growth and Characterization.
21.3 Nanowire Laser Principles.
21.4 Anisotropy of Material Gain.
21.5 Guided Modes.
21.6 Modal Gain and Threshold.
21.7 Conclusion.
References.
Index.
商品描述(中文翻譯)
這是第一本關於GaN基裝置的物理原理、數學模型和實際模擬的書籍。氮化鎵及其相關化合物使得製造高效的發光二極體和激光器成為可能,其波長範圍從紅色、黃色、綠色到藍色和紫外線。自1995年中村修二首次展示藍色激光二極體以來,這個領域在全球經歷了巨大的增長。我們每天都可以在生活中看到各種應用,從綠色交通燈到全彩色戶外顯示屏到高清晰度DVD播放器。近年來,氮化物器件建模和模擬變得越來越重要,並且出現了先進的軟件工具。類似的發展在過去也發生在其他半導體材料上,例如矽,其中計算機模擬現在已成為器件開發和製造的一部分。本書由該領域的領先研究人員撰寫,介紹了現代器件概念和模型,適用於對使用氮化物器件設計和分析的計算機模擬感興趣的科學家和器件工程師。
目錄:
前言
貢獻者名單
第一部分 材料特性
1. 簡介 (Joachim Piprek)
1.1 簡史
1.2 獨特的材料特性
1.3 熱參數
參考文獻
2. 電子能帶結構參數 (Igor Vurgaftman和Jerry R. Meyer)
2.1 簡介
2.2 能帶結構模型
2.3 能帶參數
2.4 結論
參考文獻
3. 自發極化和壓電極化: 基本理論與實際應用 (Fabio Bernardini)
3.1 為什麼III-V氮化物中存在自發極化?
3.2 AlN、GaN和InN中極化特性的理論預測
3.3 III-V氮化物納米結構中的壓電和熱電效應
3.4 三元和四元合金中的極化特性
3.5 O