Analysis for Computer Scientists: Foundations, Methods, and Algorithms (Undergraduate Topics in Computer Science)

Michael Oberguggenberger

相關主題

商品描述

This easy-to-follow textbook/reference presents a concise introduction to mathematical analysis from an algorithmic point of view, with a particular focus on applications of analysis and aspects of mathematical modelling. The text describes the mathematical theory alongside the basic concepts and methods of numerical analysis, enriched by computer experiments using MATLAB, Python, Maple, and Java applets. This fully updated and expanded new edition also features an even greater number of programming exercises.

Topics and features: describes the fundamental concepts in analysis, covering real and complex numbers, trigonometry, sequences and series, functions, derivatives, integrals, and curves; discusses important applications and advanced topics, such as fractals and L-systems, numerical integration, linear regression, and differential equations; presents tools from vector and matrix algebra in the appendices, together with further information on continuity; includes added material on hyperbolic functions, curves and surfaces in space, second-order differential equations, and the pendulum equation (NEW); contains experiments, exercises, definitions, and propositions throughout the text; supplies programming examples in Python, in addition to MATLAB (NEW); provides supplementary resources at an associated website, including Java applets, code source files, and links to interactive online learning material.

Addressing the core needs of computer science students and researchers, this clearly written textbook is an essential resource for undergraduate-level courses on numerical analysis, and an ideal self-study tool for professionals seeking to enhance their analysis skills.

商品描述(中文翻譯)

這本易於理解的教科書/參考書從算法的角度簡明地介紹了數學分析,特別著重於分析的應用和數學建模的各個方面。文本描述了數學理論,並結合了數值分析的基本概念和方法,並通過使用 MATLAB、Python、Maple 和 Java 小應用程式的計算機實驗來豐富內容。這一全新修訂和擴充的版本還包含了更多的程式設計練習。

主題和特點:描述了分析中的基本概念,涵蓋實數和複數、三角學、數列和級數、函數、導數、積分和曲線;討論了重要的應用和進階主題,如分形和 L-systems、數值積分、線性回歸和微分方程;在附錄中介紹了向量和矩陣代數的工具,以及有關連續性的進一步信息;新增了有關雙曲函數、空間中的曲線和曲面、二階微分方程和擺方程的材料(新);整個文本中包含實驗、練習、定義和命題;提供了 Python 的程式設計範例,除了 MATLAB(新);在相關網站上提供補充資源,包括 Java 小應用程式、程式碼源文件和互動式線上學習材料的連結。

這本清晰易懂的教科書針對計算機科學學生和研究人員的核心需求,是本科層級數值分析課程的必備資源,也是專業人士提升分析技能的理想自學工具。