Parameter Advising for Multiple Sequence Alignment
暫譯: 多序列比對的參數建議
Deblasio, Dan, Kececioglu, John
- 出版商: Springer
- 出版日期: 2019-06-06
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 152
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3319879022
- ISBN-13: 9783319879024
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients:
(a) the set of parameter choices considered by the advisor, and
(b) an estimator of alignment accuracy used to rank alignments produced by the aligner.
On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting.
The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content
- examines formulations of parameter advising and their computational complexity,
- develops methods for learning good accuracy estimators,
- presents approximation algorithms for finding good sets of parameter choices, and
- assesses software implementations of advising that perform well on real biological data.
Also explored are applications of parameter advising to
- adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and
- ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble.
The book concludes by offering future directions in advising research.
商品描述(中文翻譯)
這本書提出了一種新的方法,稱為參數建議,用於為序列比對器找到一組參數設定,以產生給定輸入序列集的高品質比對。在這個框架中,參數建議者是一個自動選擇輸入參數設定的程序,主要包含兩個要素:
(a) 建議者考慮的參數選擇集,以及
(b) 用於對比對器產生的比對進行排名的準確性估計器。
當將參數建議者與比對器結合時,一旦建議者在學習階段中訓練完成,使用者只需輸入要比對的序列,便可從比對器獲得輸出比對,這時建議者已自動選擇了參數設定。
各章節首先奠定參數建議的基礎,然後涵蓋建議的應用和擴展。內容包括:
- 檢視參數建議的公式及其計算複雜度,
- 開發學習良好準確性估計器的方法,
- 提出尋找良好參數選擇集的近似演算法,以及
- 評估在真實生物數據上表現良好的建議軟體實作。
此外,還探討了參數建議的應用於:
- 自適應局部重比對,在此過程中,建議在序列的局部區域進行,以自動適應變異率的變化,以及
- 集成比對,在此過程中,建議應用於一組比對器,以有效產生一個比集成中的個別比對器更高品質的新比對器。
本書最後提供了建議研究的未來方向。