From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes (Studies in Systems, Decision and Control)
暫譯: 從全球到地方的統計形狀先驗:以有限的訓練形狀獲得準確重建結果的新方法(系統、決策與控制研究)

Carsten Last

  • 出版商: Springer
  • 出版日期: 2017-03-21
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 259
  • 裝訂: Hardcover
  • ISBN: 3319535072
  • ISBN-13: 9783319535074
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

商品描述(中文翻譯)

本書提出了一種新的方法來處理有限訓練數據的問題。應對這一問題的常見方法是獨立地對預定義區段的形狀變異性進行建模,或允許無法通過訓練數據解釋的人工形狀變化,這兩者都有其缺點。本書所提出的方法在基礎數據領域的每個元素中使用局部形狀先驗,並通過平滑性約束將所有局部形狀先驗耦合在一起。本書提供了堅實的數學基礎,以便將這種新的形狀先驗公式嵌入到著名的變分圖像分割框架中。由此獲得的新分割方法允許在僅有少量訓練形狀的情況下,準確重建甚至複雜的物體類別。