Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory (SpringerBriefs in Mathematical Physics)
暫譯: 多重交換子之Lieb-Robinson界限及其在響應理論中的應用 (SpringerBriefs in Mathematical Physics)
J.-B. Bru
- 出版商: Springer
- 出版日期: 2016-12-15
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 120
- 裝訂: Paperback
- ISBN: 3319457837
- ISBN-13: 9783319457833
-
相關分類:
物理學 Physics
海外代購書籍(需單獨結帳)
相關主題
商品描述
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions.
In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
商品描述(中文翻譯)
Lieb-Robinson 界限對於多重對易子來說,是處理非相對論量子粒子在無限體積動力學中分析性方面的有效數學工具,這些粒子具有短程且可能隨時間變化的相互作用。
特別地,對於那些(非自主)C*-動力系統,顯示了基本解的存在,這些系統不符合標準理論中(拋物線或雙曲線)非自主演化方程的通常條件。在數學物理中,高於二階的多重對易子的界限可用於研究相互作用粒子對外部擾動的線性和非線性響應。這些界限是針對晶格費米子推導的,考慮到本書中討論的微觀量子電導理論的應用。所有結果也適用於量子自旋系統,並有明顯的修改。為了使結果對廣大讀者,特別是對物理背景較少的數學學生更易於理解,本文介紹了量子力學的基本概念,並考慮到其代數形式。晶格費米子的 C*-代數設定,以及著名的 Lieb-Robinson 對易子界限,將詳細解釋,以求完整性。