Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)

Le Lu (Editor), Yefeng Zheng , Gustavo Carneiro , Lin Yang

  • 出版商: Springer
  • 出版日期: 2017-07-24
  • 售價: $6,480
  • 貴賓價: 9.5$6,156
  • 語言: 英文
  • 頁數: 326
  • 裝訂: Hardcover
  • ISBN: 3319429981
  • ISBN-13: 9783319429984
  • 相關分類: DeepLearningComputer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

商品描述(中文翻譯)

本書詳細回顧了深度學習在醫學影像計算中的語義物件檢測和分割,以及大規模放射學數據庫挖掘的最新技術。特別著重於卷積神經網絡的應用,並以實際範例支持理論。特色包括:強調深度神經網絡的使用如何解決新的問題和協議,以及改善醫學影像計算中的現有挑戰;討論 Ronald M. Summers 博士的深刻研究經驗;提供最新研究和文獻的全面回顧;描述一系列利用深度學習進行2D和3D醫學影像物件或地標檢測任務的不同方法;檢視使用深度學習原則在醫學影像中進行語義分割的多樣技術;介紹一種在大規模放射學影像數據庫上進行交錯文本和影像深度挖掘的新方法。