Real Mathematical Analysis
暫譯: 實數數學分析

Pugh, Charles Chapman

相關主題

商品描述

Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonné, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis.

New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points -- which are rarely treated in books at this level -- and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.

商品描述(中文翻譯)

根據作者在加州大學伯克利分校教授的榮譽課程,這本本科實變分析的入門書籍強調了圖像和困難問題的重要性。主題包括:實數的自然構造、四維可視化、基本點集拓撲、函數空間、通過微分形式的多變數微積分(導致布勞威爾不動點定理的簡單證明),以及對勒貝格理論的圖像化處理。超過150幅詳細插圖闡明了抽象概念和證明中的重要要點。這本書的敘述風格非正式且輕鬆,包含許多有用的附註、例子、一些笑話,以及數學家如利特伍德(Littlewood)、迪厄多內(Dieudonné)和奧瑟曼(Osserman)的偶爾評論。因此,這本書在全面性、可理解性和趣味性上都超越了標準的分析入門書籍。

第二版的《實數數學分析》中新增了幾乎完全使用Burkill的下圖法進行的勒貝格積分的介紹。其優點包括:單調收斂定理和主導收斂定理的簡潔圖像證明、基於卡瓦列里原理的Fubini定理的一行/一圖證明,以及在許多情況下能夠“看見”來自測度理論的積分結果。該介紹包括維塔利覆蓋引理、密度點——這在此級別的書籍中很少被處理——以及單調函數的幾乎處處可微性。幾個新的練習題現在加入了超過500道練習題的集合,這些練習題提出有趣的挑戰並引入對於渴望掌握這一美麗主題的學生的特殊主題。

作者簡介

Charles C. Pugh is Professor Emeritus at the University of California, Berkeley. His research interests include geometry and topology, dynamical systems, and normal hyperbolicity.

作者簡介(中文翻譯)

查爾斯·C·普赫(Charles C. Pugh)是加州大學伯克利分校的名譽教授。他的研究興趣包括幾何學與拓撲學、動力系統以及正常超曲率。