Rational Points on Elliptic Curves
暫譯: 橢圓曲線上的有理點
Silverman, Joseph H., Tate, John T.
- 出版商: Springer
- 出版日期: 2015-06-24
- 售價: $2,340
- 貴賓價: 9.5 折 $2,223
- 語言: 英文
- 頁數: 332
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3319307576
- ISBN-13: 9783319307572
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,568Beautiful Data: The Stories Behind Elegant Data Solutions (Paperback)
-
$4,100$3,895 -
$4,730$4,494 -
$3,500$3,325 -
$2,500$2,375 -
$2,980$2,831 -
$1,820$1,729 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$2,250$2,138 -
$7,110$6,755 -
$1,680$1,646 -
$1,450Introduction to Complex Variables and Applications (Paperback)
-
$2,830$2,689 -
$2,565The Algorithm Design Manual, 3/e (德國原版)
-
$2,800$2,660 -
$2,000$1,900 -
$2,710$2,575 -
$4,300$4,085 -
$2,340$2,223
商品描述
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.
Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
商品描述(中文翻譯)
椭圆曲线的理论涉及代数、几何、分析和数论的愉悦结合。本书强调这种相互作用,发展基本理论,从而为高级本科生提供了欣赏现代数学统一性的机会。同时,书中尽量只使用本科课程中常见的方法和结果。这种可及性、非正式的写作风格以及丰富的练习使得《椭圆曲线上的有理点》成为所有对学习丢番图方程和算术几何感兴趣的学生的理想入门书籍。
最具体地说,椭圆曲线是二元三次多项式的零点集合。如果多项式具有有理系数,则可以询问那些坐标为整数或有理数的零点的描述。正是这个数论问题是《椭圆曲线上的有理点》的主要主题。涵盖的主题包括椭圆曲线的几何和群结构、描述有限阶点的Nagell-Lutz定理、关于有理点群有限生成的Mordell-Weil定理、关于整数点集合有限性的Thue-Siegel定理、在有限域中计数点的定理、Lenstra的椭圆曲线因式分解算法,以及关于复乘法和与扭点相关的伽罗瓦表示的讨论。第二版新增的主题包括椭圆曲线密码学的介绍以及对Wiles等人通过使用椭圆曲线证明费马最后定理的惊人证明的简要讨论。
作者簡介
Joseph H. Silverman is Professor of Mathematics at Brown University. He is the author of over 100 research articles and numerous books on elliptic curves, diophantine geometry, cryptography, and arithmetic dynamical systems.
John T. Tate is Professor Emeritus of Mathematics at The University of Texas at Austin and at Harvard University. For his seminal contributions to number theory, he was awarded the 2010 Abel Prize.
作者簡介(中文翻譯)
約瑟夫·H·西爾弗曼(Joseph H. Silverman)是布朗大學的數學教授。他是超橢圓曲線、丟番圖幾何、密碼學和算術動態系統方面超過100篇研究文章及多本書籍的作者。
約翰·T·泰特(John T. Tate)是德克薩斯大學奧斯汀分校和哈佛大學的名譽數學教授。因其對數論的開創性貢獻,他於2010年獲得阿貝爾獎(Abel Prize)。