Model Predictive Control: Classical, Robust and Stochastic
暫譯: 模型預測控制:經典、穩健與隨機
Kouvaritakis, Basil, Cannon, Mark
- 出版商: Springer
- 出版日期: 2015-12-11
- 售價: $3,460
- 貴賓價: 9.5 折 $3,287
- 語言: 英文
- 頁數: 384
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3319248510
- ISBN-13: 9783319248516
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques.
Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides:
- extensive use of illustrative examples;
- sample problems; and
- discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage.
Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
商品描述(中文翻譯)
這是一本首次將經典預測控制與最新的穩健和隨機技術相結合的教科書。
模型預測控制描述了針對不確定、隨機、受約束系統的可處理算法的開發。起點是經典預測控制,以及性能目標和約束的適當表述,以提供閉環穩定性和性能的保證。接著,文本解釋了如何在描述系統動力學的模型受到加性擾動和參數不確定性影響的情況下獲得類似的保證,進而探討穩健預測控制。考慮了開環和閉環優化,並針對具有加性模型不確定性的系統,介紹了基於不確定性管的計算可處理方法的最新進展。最後,該管框架也應用於涉及硬性或概率約束的模型預測控制問題,針對乘法和隨機模型不確定性的情況。這本書提供了:
- 大量的示例說明;
- 範例問題;以及
- 對新穎控制應用的討論,例如可持續發展的資源分配和渦輪葉片控制,以最大化能量捕獲,同時降低由湍流引起的損壞風險。
攻讀模型預測控制課程的研究生,或更一般地說,攻讀高級或過程控制的學生,以及需要專門處理的高年級本科生,將會發現模型預測控制是這一重要主題的前沿指南。對於教師來說,它提供了一個權威的資源,用於課程的建構。
作者簡介
作者簡介(中文翻譯)
兩位作者均曾在牛津大學工程科學系教授及輔導本科生,並指導過許多本科生的畢業專題及博士生的研究(Cannon 博士的教學生涯長達 20 年,而 Kouvaritakis 教授則超過 40 年)。他們在研究方面也非常活躍,已在多本知名的控制期刊上發表了數百篇文章。此外,他們還擔任過多個研究項目的研究員和首席研究員,其中一些項目與產業夥伴有關。