Scalable Pattern Recognition Algorithms: Applications in Computational Biology and Bioinformatics
暫譯: 可擴展的模式識別演算法:在計算生物學與生物資訊學中的應用

Pradipta Maji, Sushmita Paul

相關主題

商品描述

This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.

商品描述(中文翻譯)

本書針對統一框架的需求進行探討,描述如何明智地制定和使用軟計算及機器學習技術來構建高效的模式識別模型。文本回顧了既有的研究和前沿的研究,提供了理論、演算法和應用之間的謹慎平衡,特別強調計算生物學和生物資訊學中的應用。特點包括:整合不同的軟計算和機器學習方法與模式識別任務;詳細討論處理決策不確定性和高效挖掘大型生物數據集的不同技術的整合;特別強調現實生活中的應用,例如微陣列表達數據集和磁共振影像;包含大量示例和實驗結果以支持所描述的理論概念;每章結尾提供未來研究的方向和全面的參考文獻。