An Introduction to Web Mining: With Applications in R
暫譯: 網路挖掘入門:R語言應用實例

Matter, Ulrich

  • 出版商: Springer
  • 出版日期: 2025-08-08
  • 售價: $4,300
  • 貴賓價: 9.5$4,085
  • 語言: 英文
  • 頁數: 251
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031966376
  • ISBN-13: 9783031966378
  • 相關分類: Web-crawler 網路爬蟲
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is devoted to the art and science of web mining -- showing how the world's largest information source can be turned into structured, research-ready data. Drawing on many years of teaching graduate courses on Web Mining and on numerous large-scale research projects in web mining contexts, the author provides clear explanations of key web technologies combined with hands-on R tutorials that work in the real world -- and keep working as the web evolves.

Through the book, readers will learn how to

- scrape static and dynamic/JavaScript-heavy websites
- use web APIs for structured data extraction from web sources
- build fault-tolerant crawlers and cloud-based scraping pipelines
- navigate CAPTCHAs, rate limits, and authentication hurdles
- integrate AI-driven tools to speed up every stage of the workflow
- apply ethical, legal, and scientific guidelines to their web mining activities

Part I explains why web data matters and leads the reader through a first "hello-scrape" in R while introducing HTML, HTTP, and CSS. Part II explores how the modern web works and shows, step by step, how to move from scraping static pages to collecting data from APIs and JavaScript-driven sites. Part III focuses on scaling up: building reliable crawlers, dealing with log-ins and CAPTCHAs, using cloud resources, and adding AI helpers. Part IV looks at ethical, legal, and research standards, offering checklists and case studies, enabling the reader to make responsible choices. Together, these parts give a clear path from small experiments to large-scale projects.

This valuable guide is written for a wide readership -- from graduate students taking their first steps in data science to seasoned researchers and analysts in economics, social science, business, and public policy. It will be a lasting reference for anyone with an interest in extracting insight from the web -- whether working in academia, industry, or the public sector.

商品描述(中文翻譯)

本書專注於網路挖掘的藝術與科學——展示如何將世界上最大的資訊來源轉化為結構化、可供研究的數據。作者基於多年教授網路挖掘研究生課程的經驗,以及在網路挖掘背景下進行的多個大型研究項目,提供了關鍵網路技術的清晰解釋,並結合實用的 R 課程,這些課程在現實世界中有效運作,並隨著網路的演變而持續有效。

透過本書,讀者將學會如何:
- 擷取靜態和動態/重 JavaScript 的網站
- 使用網路 API 從網路來源提取結構化數據
- 建立容錯的爬蟲和基於雲端的擷取管道
- 瀏覽 CAPTCHA、速率限制和身份驗證障礙
- 整合 AI 驅動的工具以加速工作流程的每個階段
- 將倫理、法律和科學指導方針應用於其網路挖掘活動

第一部分解釋了為什麼網路數據重要,並引導讀者在 R 中進行第一次「你好擷取」的實作,同時介紹 HTML、HTTP 和 CSS。第二部分探討現代網路的運作方式,逐步展示如何從擷取靜態頁面轉向從 API 和 JavaScript 驅動的網站收集數據。第三部分專注於擴展:建立可靠的爬蟲、處理登錄和 CAPTCHA、使用雲端資源以及添加 AI 助手。第四部分則關注倫理、法律和研究標準,提供檢查清單和案例研究,幫助讀者做出負責任的選擇。這些部分共同提供了一條從小型實驗到大型項目的清晰路徑。

這本寶貴的指南是為廣泛的讀者群體而寫——從剛開始接觸數據科學的研究生到經驗豐富的經濟學、社會科學、商業和公共政策的研究人員和分析師。對於任何有興趣從網路中提取洞見的人來說,無論是在學術界、產業界還是公共部門,這將是一本持久的參考書。

作者簡介

Ulrich Matter is Professor of Applied Data Science at Bern University of Applied Sciences and Affiliate Professor of Economics at the University of St. Gallen. His primary research interests lie at the intersection of data science, political economics, and media economics.

作者簡介(中文翻譯)

烏爾里希·馬特是伯恩應用科學大學的應用數據科學教授,以及聖加侖大學的經濟學附屬教授。他的主要研究興趣位於數據科學、政治經濟學和媒體經濟學的交集處。