Postmodern Fermi Liquids
Mehta, Umang
- 出版商: Springer
- 出版日期: 2024-10-24
- 售價: $5,020
- 貴賓價: 9.5 折 $4,769
- 語言: 英文
- 頁數: 102
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 303172402X
- ISBN-13: 9783031724022
海外代購書籍(需單獨結帳)
相關主題
商品描述
This thesis develops a new approach to Fermi liquids based on the mathematical formalism of coadjoint orbits, allowing Landau's Fermi liquid theory to be recast in a simple and elegant way as a field theory. The theory of Fermi liquids is a cornerstone of condensed matter physics with many applications, but efforts to cast Landau's Fermi liquid theory in the modern language of effective field theory suffer from technical and conceptual difficulties: the Fermi surface seems to defy a simple effective field theory description. This thesis reviews the recently-developed formalism for Fermi liquids that exploits an underlying structure described by the group of canonical transformations of a single particle phase space. This infinite-dimensional group governs the space of states of zero temperature Fermi liquids and allows one to write down a nonlinear, bosonized action that reproduces Landau's kinetic theory in the classical limit. The thesis then describes how that Fermi liquid theory can essentially be thought of as a non-trivial representation of the Lie group of canonical transformations, bringing it within the fold of effective theories in many-body physics whose structure is determined by symmetries. After analyzing the benefits and limitations of this geometric formalism, pathways to extensions of the formalism to include superconducting and magnetic phases, as well as applications to the problem of non-Fermi liquids, are discussed. The thesis begins with a pedagogical review of Fermi liquid theory and concludes with a discussion on possible future directions for Fermi surface physics, and more broadly, the usefulness of diffeomorphism groups in condensed matter physics.
商品描述(中文翻譯)
本論文基於共伴隨軌道的數學形式,發展了一種新的費米液體方法,允許將蘭道的費米液體理論以簡單而優雅的方式重構為場論。費米液體理論是凝聚態物理的基石,具有許多應用,但將蘭道的費米液體理論轉化為現代有效場論的語言時,面臨技術和概念上的困難:費米面似乎無法用簡單的有效場論描述。本論文回顧了最近發展的費米液體形式,利用由單粒子相空間的正則變換群所描述的基本結構。這個無限維的群體支配著零溫費米液體的態空間,並允許我們寫出一個非線性、玻色化的作用量,該作用量在經典極限下重現了蘭道的動力學理論。接著,論文描述了如何將費米液體理論本質上視為正則變換的李群的一個非平凡表示,將其納入多體物理中有效理論的範疇,這些理論的結構由對稱性決定。在分析了這種幾何形式的優點和局限性後,論文討論了擴展該形式以包括超導和磁性相的途徑,以及對非費米液體問題的應用。論文以費米液體理論的教學性回顧開始,並以對費米面物理的未來可能方向的討論結束,更廣泛地探討了微分同構群在凝聚態物理中的實用性。
作者簡介
Umang Mehta obtained his B.Tech. degree at the Indian Institute of Technology Bombay in 2017, an M.S. degree at the University of Chicago in 2018, and a Ph.D. at the University of Chicago in 2023. He was awarded the DAAD WISE Scholarship awarded by the German Federal Ministry of Education and Research for undergraduate research in Germany, won the Gregor Wentzel Research Prize given by the Department of Physics of the University of Chicago for outstanding research in theoretical physics, and was a Graduate Fellow at the Kavli Institute for Theoretical Physics for the winter semester in 2022.
Umang is currently a postdoctoral researcher at the University of Colorado, Boulder and affiliated with the Simons Foundation's Ultra Quantum Matter collaboration. His research primarily focuses on the theory of many-body systems ranging from unconventional conductors and superconductors, topological phases of matter, to active dynamical systems.
作者簡介(中文翻譯)
Umang Mehta於2017年在印度理工學院孟買獲得B.Tech.學位,2018年在芝加哥大學獲得M.S.學位,並於2023年在芝加哥大學獲得Ph.D.學位。他曾獲得德國聯邦教育與研究部頒發的DAAD WISE獎學金,以支持他在德國的本科研究,並因在理論物理方面的卓越研究而獲得芝加哥大學物理系頒發的Gregor Wentzel研究獎。此外,他在2022年冬季學期擔任Kavli理論物理研究所的研究生獎學金獲得者。
目前,Umang是科羅拉多大學博爾德分校的博士後研究員,並與Simons基金會的超量子物質合作項目有關。他的研究主要集中在多體系統的理論上,涵蓋了非常規導體和超導體、拓撲物質相以及主動動態系統等領域。