Machine Learning for Environmental Noise Classification in Smart Cities

Albaji, Ali Othman

  • 出版商: Springer
  • 出版日期: 2024-03-23
  • 定價: $2,240
  • 售價: 8.0$1,792
  • 語言: 英文
  • 頁數: 170
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031546660
  • ISBN-13: 9783031546662
  • 相關分類: Machine Learning
  • 立即出貨(限量) (庫存=1)

買這商品的人也買了...

相關主題

商品描述

We present a Machine Learning (ML) approach to monitoring and classifying noise pollution. Both methods of monitoring and classification have been proven successful. MATLAB and Python code was generated to monitor all types of noise pollution from the collected data, while ML was trained to classify these data. ML algorithms showed promising performance in monitoring the different sound classes such as highways, railways, trains and birds, airports and many more. It is observed that all the data obtained by both methods can be used to control noise pollution levels and for data analytics. They can help decision making and policy making by stakeholders such as municipalities, housing authorities and urban planners in smart cities. The findings indicate that ML can be used effectively in monitoring and measurement. Improvements can be obtained by enhancing the data collection methods. The intention is to develop more ML platforms from which to construct a less noisy. The second objective of this study was to visualize and analyze the data of 18 types of noise pollution that have been collected from 16 different locations in Malaysia. All the collected data were stored in Tableau software. Through the use of both qualitative and quantitative measurements, the data collected for this project was then combined to create a noise map database that can help smart cities make informed decisions.

商品描述(中文翻譯)

我們提出了一種機器學習(ML)方法來監測和分類噪音污染。監測和分類的兩種方法都被證明是成功的。我們生成了MATLAB和Python代碼來監測從收集的數據中產生的各種類型的噪音污染,同時使用ML來對這些數據進行分類。ML算法在監測不同聲音類別(如高速公路、鐵路、火車和鳥類、機場等)方面表現出有希望的性能。觀察到,這兩種方法獲得的所有數據都可以用於控制噪音污染水平和數據分析。它們可以幫助市政當局、住房機構和城市規劃者等利益相關者進行決策和政策制定,特別是在智慧城市中。研究結果表明,ML可以有效地用於監測和測量。通過改進數據收集方法,可以獲得更好的效果。本研究的第二個目標是對馬來西亞16個不同地點收集的18種噪音污染數據進行可視化和分析。所有收集的數據都存儲在Tableau軟件中。通過定性和定量測量的結合,將為該項目收集的數據結合起來,創建一個噪音地圖數據庫,可以幫助智慧城市做出明智的決策。

作者簡介

Ali Othman Albaji received a bachelor's degree in electrical engineering specializing in "General communications" from the Civil Aviation Higher College, Tripoli, Libya, in 2007, and a Master's degree in electronics and telecommunication engineering from University Technology Malaysia *UTM*, Johor Bahru, Malaysia in 2022. His research interests are Machine Learning (ML), IoT, Wireless Sensor Networks (WSN), VSAT, SCADA Systems, Optical Networking, Wireless Communications, Deep Learning (DL), Artificial intelligence (AI), Web design, Robotics, and Programming Languages expert / Traineron ( Python, MATLAB, JAVA, JAVA Script, SQL, Data Base MSQL, C++, HTML, and....ETC).

 

 

 

作者簡介(中文翻譯)

Ali Othman Albaji於2007年從利比亞的民航高等學院獲得電氣工程學士學位,專攻「通訊」。他於2022年從馬來西亞柔佛州新山的馬來西亞理工大學(UTM)獲得電子與通訊工程碩士學位。他的研究興趣包括機器學習(ML)、物聯網(IoT)、無線感測網絡(WSN)、VSAT、SCADA系統、光纖網絡、無線通訊、深度學習(DL)、人工智慧(AI)、網頁設計、機器人技術以及編程語言專家/培訓師(Python、MATLAB、JAVA、JavaScript、SQL、資料庫MSQL、C++、HTML等)。