Infinite Group Actions on Polyhedra

Davis, Michael W.

  • 出版商: Springer
  • 出版日期: 2024-05-16
  • 售價: $5,540
  • 貴賓價: 9.5$5,263
  • 語言: 英文
  • 頁數: 271
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3031484428
  • ISBN-13: 9783031484421
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.

商品描述(中文翻譯)

在過去的十五年中,直角 Artin 群和特殊立方體複合體的理論已成為幾何群論的核心主題。本專著介紹了這一理論,以及幾何群論中的其他現代技術。本書以群在可收縮多面體上的作用為主題,探討了兩種構造這種作用的突出方法:利用非正曲率多面體的通用覆蓋的群作為覆蓋變換群,以及利用群的簡單複合體理論。本書介紹了通過 CAT(0) 立方體複合體獲得立方體示例的各種方法,包括多面體乘積構造、超球化程序和 Sageev 構造。此外,它還提供了重要的非立方體示例的統一介紹,例如 Coxeter 群、Artin 群和作用於建築物上的群。本書旨在成為幾何群論專業的研究生和研究人員的資源,同時也對於相關領域(如三維流形)的數學家非常有興趣。

作者簡介

Michael Davis received a PhD in mathematics from Princeton University in 1975. He was Professor of Mathematics at Ohio State University for thirty nine years, retiring in 2022 as Professor Emeritus. In 2015 he became a Fellow of the AMS. His research is in geometric group theory and topology. Since 1981 his work has focused on topics related to reflection groups including the construction of new examples of aspherical manifolds and the study of their properties.

作者簡介(中文翻譯)

Michael Davis於1975年從普林斯頓大學獲得數學博士學位。他在俄亥俄州立大學擔任數學教授長達三十九年,於2022年退休並成為名譽教授。2015年,他成為美國數學學會的會士。他的研究領域是幾何群論和拓撲學。自1981年以來,他的工作主要集中在與反射群相關的主題上,包括建構新的非球面流形的例子以及研究它們的性質。