Materials Data Science: Introduction to Data Mining, Machine Learning, and Data-Driven Predictions for Materials Science and Engineering
暫譯: 材料數據科學:材料科學與工程的數據挖掘、機器學習及數據驅動預測入門

Sandfeld, Stefan

  • 出版商: Springer
  • 出版日期: 2025-05-09
  • 售價: $2,470
  • 貴賓價: 9.5$2,347
  • 語言: 英文
  • 頁數: 618
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3031465679
  • ISBN-13: 9783031465673
  • 相關分類: Machine LearningData-miningData Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This text covers all of the artificial intelligence, deep learning, and data science topics relevant to materials science and engineering, accompanied by numerous examples and applications. The book begins with a concise introduction to statistics and probabilities, explaining important concepts and definitions such as probability functions and distributions, sampling and data preparation, Bayes' theorem, and statistical significance testing in the context of materials science. As such it is a useful introduction for both undergraduate and graduate students as well as a refresher for research scientists and practicing engineers. The second part is a detailed description of (statistical) machine learning and deep learning. It considers a range of supervised and unsupervised methods including multi-output regression, random forests, time series prediction, and clustering as well as a number of different deep learning networks such as convolutional neural networks, auto-encoder, or generative adversarial networks. The degree of detail and theory is such that all methods can be understood and critically discussed, and it is reinforced by extensive examples within materials science and engineering. The final part considers six complex applications and advanced topics of machine learning and data mining in materials science and engineering. A comprehensive appendix is included, summarizing the most important statistical and mathematical techniques.
  • Introduces machine learning/deep learning methods in detail based on examples and data from materials science;
  • Covers all theoretical foundations in an accessible manner, tailored to materials scientists and engineers;
  • Maximizes intuitive understanding with materials science and physics examples, coding exercises, and online material.


商品描述(中文翻譯)

本書涵蓋了與材料科學和工程相關的所有人工智慧、深度學習和數據科學主題,並附有眾多範例和應用。書籍首先簡要介紹統計學和機率論,解釋了在材料科學背景下的重要概念和定義,如機率函數和分佈、抽樣和數據準備、貝葉斯定理以及統計顯著性檢驗。因此,這對於本科生和研究生來說都是一個有用的入門書籍,同時也為研究科學家和在職工程師提供了複習的機會。第二部分詳細描述了(統計)機器學習和深度學習。它考慮了一系列的監督式和非監督式方法,包括多輸出回歸、隨機森林、時間序列預測和聚類,以及多種不同的深度學習網絡,如卷積神經網絡、自編碼器或生成對抗網絡。這些方法的細節和理論程度使得所有方法都能被理解並進行批判性討論,並通過在材料科學和工程中的廣泛範例得到加強。最後一部分考慮了材料科學和工程中機器學習和數據挖掘的六個複雜應用和進階主題。書中附有一個全面的附錄,總結了最重要的統計和數學技術。

- 詳細介紹基於材料科學的範例和數據的機器學習/深度學習方法;
- 以易於理解的方式涵蓋所有理論基礎,針對材料科學家和工程師量身定制;
- 通過材料科學和物理學的範例、編碼練習和線上資料,最大化直觀理解。

作者簡介

Prof. Dr. Stefan Sandfeld is Director of the Institute for Advanced Simulation: Materials Data Science and Informatics (IAS-9) Forschungszentrum Juelich, Germany; and Professor/Chair of Materials Data Science and Materials Informatics, RWTH Aachen University.​




作者簡介(中文翻譯)

斯特凡·桑德費爾德教授(Prof. Dr. Stefan Sandfeld)是德國尤利希研究中心(Forschungszentrum Juelich)高級模擬研究所:材料數據科學與資訊學(Institute for Advanced Simulation: Materials Data Science and Informatics, IAS-9)的主任;同時也是亞琛工業大學(RWTH Aachen University)材料數據科學與材料資訊學的教授及系主任。