Machine Learning and Its Application to Reacting Flows: ML and Combustion
暫譯: 機器學習及其在反應流中的應用:ML與燃燒
Swaminathan, Nedunchezhian, Parente, Alessandro
- 出版商: Springer
- 出版日期: 2023-01-02
- 售價: $2,020
- 貴賓價: 9.5 折 $1,919
- 語言: 英文
- 頁數: 346
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031162501
- ISBN-13: 9783031162503
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This is open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows.
These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world's total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and "greener" combustion systems that are friendlier to the environment can be designed.
The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation.
商品描述(中文翻譯)
這本開放存取的書籍介紹並解釋了為統計推斷而開發的機器學習(ML)演算法和技術,這些演算法和技術應用於化學反應湍流流動的模擬。
這兩個領域,機器學習和湍流燃燒,各自擁有大量的研究成果和知識,而本書將它們結合在一起,解釋在應用機器學習技術來模擬和研究反應流動時所涉及的複雜性和挑戰。這一點對於全球的總初級能源供應(TPES)至關重要,因為超過90%的能源供應來自燃燒技術,且燃燒對環境的影響不可忽視。儘管基於可再生能源的替代技術正在出現,但目前它們在TPES中的佔比不到5%,要取代燃燒來源需要完全的範式轉變。這是否可行則是另一個問題,對這個問題的回答取決於回答者。然而,務實的分析表明,即使到2070年,燃燒在TPES中的佔比可能仍會超過70%。因此,利用機器學習技術來改善燃燒科學和技術,以設計出更高效且對環境更友好的「綠色」燃燒系統,將是明智之舉。
本書涵蓋了這兩個主題的最新技術狀態,並概述了所涉及的挑戰、使用機器學習進行湍流燃燒模擬的優缺點,包括可以探索的克服挑戰的途徑。所需的數學方程式和背景知識也有討論,並提供了豐富的參考資料,供讀者進一步查閱。如果他們有興趣,這本書是獨特的,因為沒有其他書籍涵蓋類似的主題,從大數據分析和機器學習演算法到它們在燃燒科學和能源生成系統設計中的應用。
作者簡介
Alessandro Parente is Professor of Thermodynamics, Fluid Mechanics and Combustion at the Aero-Thermo-Mechanical Department of Université Libre de Bruxelles, as well as director of the Combustion and Robust Optimisation research center (BURN, burn-research.be). In this capacity, he also serves as vice-president of the Belgian Section of the Combustion Institute. The research interests of Dr. Parente are in the field of turbulent/chemistry interaction in turbulent combustion and reduced-order models, non-conventional fuels and pollutant formation in combustion systems, novel combustion technologies, numerical simulation of atmospheric boundary layer flows, and validation and uncertainty quantification.
作者簡介(中文翻譯)
奈敦切詹·斯瓦米納坦(Nedunchezhian Swaminathan)是英國劍橋大學機械工程系的教授,並擔任劍橋羅賓遜學院的研究院院士及學術主任。他自2018年起成為燃燒學會的院士。斯瓦米納坦在多所海外大學擔任訪問教授,並為多個交通和能源領域的產業提供諮詢。他在燃燒、湍流、燃燒噪音與不穩定性,以及多物理現象在工程應用和地球物理中的流動模擬等領域擁有25年的研究和教學經驗。
亞歷山德羅·帕倫特(Alessandro Parente)是布魯塞爾自由大學(Université Libre de Bruxelles)航空熱機械系的熱力學、流體力學和燃燒教授,同時也是燃燒與穩健優化研究中心(BURN, burn-research.be)的主任。在此職位上,他還擔任比利時燃燒學會的副會長。帕倫特博士的研究興趣包括湍流燃燒中的湍流/化學相互作用及降階模型、非常規燃料及燃燒系統中的污染物形成、新型燃燒技術、大氣邊界層流動的數值模擬,以及驗證與不確定性量化。