-
出版商:
Springer
-
出版日期:
2022-04-07
-
售價:
$3,320
-
貴賓價:
9.5 折
$3,154
-
語言:
英文
-
頁數:
422
-
裝訂:
Quality Paper - also called trade paper
-
ISBN:
3031013328
-
ISBN-13:
9783031013324
-
相關分類:
Data Science
商品描述
Multi-Modal Ensembles of Regressor Chains for Multi-Output Prediction.- A Two-Step Approach for Explainable Relation Extraction.- Towards Automation of Topic Taxonomy Construction.- A fault detection framework based on LSTM autoencoder: a case study for Volvo bus data.- Detection and Multi-Label Classification of Bats.- End-to-End Mobile System for Diabetic Retinopathy Screening Based on Lightweight Deep Neural Network.- Effcient Bayesian learning of sparse deep artificial neural networks.- Tensor Completion Post-Correction.- Hadi Fanaee-T S-LIME: Reconciling Locality and Fidelity in Linear Explanations.- Changes in Predictions of Classification Models for Data Streams.- Impact of dimensionality on nowcasting seasonal influenza with environmental factors.- On Usefulness of Outlier Elimination in Classification Tasks.- Suitability of Different Metric Choices for Concept Drift Detection.- Exploring the Geometry and Topology of Neural Network Loss Landscapes.- Selecting Outstanding Patterns Based on their Neighbourhood.- Using Explainable Boosting Machine to Compare Idiographic and Nomothetic Approaches for Ecological Momentary Assessment Data.- dunXai: DO-U-Net for Explainable (Multi-Label) Image Classification.- AGS: Attribution Guided Sharpening as a Defense Against Adversarial Attacks.- VAE-CE: Visual Contrastive Explanation using Disentangled VAEs.- Evaluation of Uplift Models with Non-Random Assignment Bias.- A Generic Trace Ordering Framework for Incremental Process Discovery.- Bank statements to network features: Extracting features out of time series using visibility graph.- Modular-Relatedness for Continual Learning.- Combining Multiple Data Sources to Predict IUCN Conservation Status of Reptiles.- LG4AV: Combining Language Models and Graph Neural Networks for Author Verification.-Effcient Subgroup Discovery Through Auto-Encoding.- Simulation of scientific experiments with generative models.- A Learning Vector Quantization Architecture for Transfer Learning Based Classification in Case of Multiple Sources by Means of Nullspace Evaluation.- MuseBar: Alleviating Posterior Collapse in Recurrent VAEs toward Music Generation.- Parameter Learning in ProbLog With Annotated Disjunctions.- Semantic-Based Few-Shot Classification by Psychometric Learning.
商品描述(中文翻譯)
多模態回歸鏈集成的多輸出預測。- 一種可解釋的關係提取的兩步驟方法。- 朝向主題分類法構建的自動化。- 基於 LSTM 自編碼器的故障檢測框架:以 Volvo 公車數據為案例研究。- 蝙蝠的檢測與多標籤分類。- 基於輕量級深度神經網絡的糖尿病視網膜病變篩查端到端移動系統。- 稀疏深度人工神經網絡的高效貝葉斯學習。- 張量補全後修正。- Hadi Fanaee-T S-LIME:在線性解釋中調和局部性與保真度。- 數據流分類模型預測的變化。- 維度對於使用環境因素進行季節性流感即時預測的影響。- 在分類任務中消除異常值的有用性。- 不同度量選擇對概念漂移檢測的適用性。- 探索神經網絡損失地形的幾何和拓撲。- 根據其鄰域選擇優秀模式。- 使用可解釋的增強機器比較個別與類型化方法在生態瞬時評估數據中的應用。- dunXai:用於可解釋的(多標籤)圖像分類的 DO-U-Net。- AGS:作為對抗攻擊防禦的歸因引導銳化。- VAE-CE:使用解耦 VAE 的視覺對比解釋。- 評估具有非隨機分配偏差的提升模型。- 一個通用的增量過程發現的追蹤排序框架。- 銀行對帳單到網絡特徵:使用可見性圖從時間序列中提取特徵。- 持續學習的模組相關性。- 結合多個數據來源預測爬蟲類的 IUCN 保護狀態。- LG4AV:結合語言模型和圖神經網絡進行作者驗證。- 通過自編碼實現高效的子群發現。- 使用生成模型模擬科學實驗。- 一種基於空間評估的轉移學習分類的學習向量量化架構,適用於多個來源。- MuseBar:減輕重複 VAE 中的後驗崩潰以促進音樂生成。- ProbLog 中帶註釋的析取式參數學習。- 基於語義的少量樣本分類通過心理測量學習。