Reservoir Model Design: A Practitioner's Guide

Ringrose, Philip, Bentley, Mark

  • 出版商: Springer
  • 出版日期: 2022-06-11
  • 售價: $2,270
  • 貴賓價: 9.5$2,157
  • 語言: 英文
  • 頁數: 322
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3030701654
  • ISBN-13: 9783030701659
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types, and for a range of fluid systems - oil, gas and CO2, production and injection, and effects of different mobility ratios. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, displacement mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design.

The second edition updates the existing sections and adds sections on the following topics:

- Anew chapter on modelling for CO2 storage

- A new chapter on modelling workflows

- An extended chapter on fractured reservoir modelling

- An extended chapter on multi-scale modelling

- An extended chapter on the quantification of uncertainty

- A revised section on the future of modelling based on recently published papers by the authors

The main audience for this book is the community of applied geoscientists and engineers involved in understanding fluid flow in the subsurface: whether for the extraction of oil or gas or the injection of CO2 or the subsurface storage of energy in general. We will always need to understand how fluids move in the subsurface and we will always require skills to model these quantitatively. The second edition of this reference book therefore aims to highlight the modelling skills developed for the current energy industry which will also be required for the energy transition of the future. The book is aimed at technical-professional practitioners in the energy industry and is also suitable for a range of Master's level courses in reservoir characterisation, modelling and engineering.

- Provides practical advice and guidelines for users of 3D reservoir modelling packages

- Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling

- Covers rock modelling, property modelling, upscaling, fluid flow and uncertainty handling

- Encompasses clastic, carbonate and fractured reservoirs

- Applies to multi-fluid cases and applications: hydrocarbons and CO2, production and storage; rewritten for use in the Energy Transition.

作者簡介

Philip Ringrose has worked as a geoscientist for over 30 years on many aspects of the design and construction of fluid flow models of geological reservoir systems, both for environmental applications (groundwater and CO2 storage) and for petroleum reservoir field development. He is currently at the Equinor Research Centre in Trondheim, Norway, and Adjunct Professor at NTNU, Trondheim, Norway. In 2018 he was appointed Honorary Professor in Sustainable Geoenergy at the University of Edinburgh, School of Geosciences. He holds Bachelor and Doctorate degrees in Geology (Edinburgh and Strathclyde) and has published widely on flow in rock media.

Mark Bentley is a geoscientist with 30 years' experience in the oil and gas business. He worked for 11 years as a production geologist for Shell in the UK, Oman and the Netherlands and has subsequently worked as a geoscientist consulting and training internationally with TRACS, based in Aberdeen, Scotland. He has been building reservoir models since 1993 and has a particular interest in the expression of subsurface uncertainty through reservoir modelling. He holds Bachelor and Doctorate degrees in geology and structural geology from the University of Wales and since 2018 has been an Associate Professor in the Institute of GeoEnergy Engineering at Heriot-Watt University in Edinburgh.