Moduli of K-Stable Varieties
暫譯: K-穩定變形的模空間

Codogni, Giulio, Dervan, Ruadhai, Viviani, Filippo

  • 出版商: Springer
  • 出版日期: 2019-07-10
  • 售價: $6,400
  • 貴賓價: 9.5$6,080
  • 語言: 英文
  • 頁數: 181
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030131572
  • ISBN-13: 9783030131579
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kähler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kähler and almost-Kähler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kähler-Einstein metrics.

商品描述(中文翻譯)

本卷是2017年在義大利羅馬舉辦的「K-穩定多樣體的模塊」研討會的成果。內容專注於典範 Kähler 度量的存在問題,並與代數幾何中的 K-穩定性概念相關聯。這本書包含了對此問題的綜述,特別是在 Fano 多樣體的情況下,以及針對這一問題和相關問題的原創貢獻。後者的論文發展了 K-穩定性的理論;探討了 Kähler 和近 Kähler 環境中的典範度量;提供了對 K-穩定性幾何意義的新見解;並發展了曲線模塊空間的熱帶方面、高維模塊理論所需的奇異性理論,以及最小模型的存在性。反映了近年來該領域的進展,綜述文章提供了許多最重要發現的基本概述。本書旨在為所有希望了解模塊空間、K-穩定性和 Kähler-愛因斯坦度量理論最新發展的高級研究生和研究人員提供參考。

作者簡介

Ruadhaí Dervan received his PhD from the University of Cambridge in 2016, and is currently a Research Fellow at Gonville & Caius College, Cambridge. His research focuses on complex geometry and algebraic geometry, especially canonical Kähler metrics, moduli theory and geometric analysis.

Giulio Codogni obtained his PhD from the University of Cambridge in 2016, and is currently a Research Fellow at the Department of Mathematics and Physics, Roma Tre University. His research interests are in algebraic geometry, especially K-stability, moduli theory and modular forms.

Filippo Viviani received his PhD from the University of Roma Tor Vergata in 2007, and is currently an Associate Professor at Roma Tre University. His research focuses on algebraic geometry, especially moduli theory and its connections with birational geometry and combinatorics.

作者簡介(中文翻譯)

Ruadhaí Dervan 於2016年獲得劍橋大學的博士學位,目前是劍橋的Gonville & Caius College的研究員。他的研究專注於複幾何和代數幾何,特別是典範Kähler度量、模理論和幾何分析。

Giulio Codogni 於2016年獲得劍橋大學的博士學位,目前是羅馬三大學數學與物理系的研究員。他的研究興趣在於代數幾何,特別是K穩定性、模理論和模形式。

Filippo Viviani 於2007年獲得羅馬托爾維爾大學的博士學位,目前是羅馬三大學的副教授。他的研究專注於代數幾何,特別是模理論及其與雙有理幾何和組合學的聯繫。