Genetic Programming Theory and Practice XIV
暫譯: 遺傳程式設計理論與實務 XIV
Riolo, Rick, Worzel, Bill, Goldman, Brian
- 出版商: Springer
- 出版日期: 2019-01-30
- 售價: $2,470
- 貴賓價: 9.5 折 $2,347
- 語言: 英文
- 頁數: 227
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3030073009
- ISBN-13: 9783030073008
海外代購書籍(需單獨結帳)
相關主題
商品描述
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Chapters in this volume include:
- Similarity-based Analysis of Population Dynamics in GP Performing Symbolic Regression
- Hybrid Structural and Behavioral Diversity Methods in GP
- Multi-Population Competitive Coevolution for Anticipation of Tax Evasion
- Evolving Artificial General Intelligence for Video Game Controllers
- A Detailed Analysis of a PushGP Run
- Linear Genomes for Structured Programs
- Neutrality, Robustness, and Evolvability in GP
- Local Search in GP
- PRETSL: Distributed Probabilistic Rule Evolution for Time-Series Classification
- Relational Structure in Program Synthesis Problems with Analogical Reasoning
- An Evolutionary Algorithm for Big Data Multi-Class Classification Problems
- A Generic Framework for Building Dispersion Operators in the Semantic Space
- Assisting Asset Model Development with Evolutionary Augmentation
- Building Blocks of Machine Learning Pipelines for Initialization of a Data Science Automation Tool
Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
商品描述(中文翻譯)
這些貢獻由國際頂尖的遺傳編程(Genetic Programming, GP)研究者和實踐者撰寫,探討了理論與實證結果在現實世界問題上的協同作用,提供了對GP最新技術的全面視角。本卷中的章節包括:
- 基於相似性的GP群體動態分析進行符號回歸
- GP中的混合結構與行為多樣性方法
- 多群體競爭共演化以預測逃稅行為
- 為視頻遊戲控制器演化人工通用智能
- PushGP運行的詳細分析
- 用於結構化程序的線性基因組
- GP中的中立性、穩健性和可演化性
- GP中的局部搜索
- PRETSL:用於時間序列分類的分佈式概率規則演化
- 具有類比推理的程序合成問題中的關係結構
- 用於大數據多類別分類問題的演化算法
- 用於構建語義空間中擴散運算子的通用框架
- 通過演化增強協助資產模型開發
- 用於數據科學自動化工具初始化的機器學習管道的構建模塊
讀者將通過對最新和最重要結果的深入介紹,發現GP在各種問題領域的大規模現實應用。