Deep Learning for the Layman: Visual Guide without Maths added (Data Sciences)
暫譯: 深度學習入門:無數學的視覺指南(數據科學)

François Duval

  • 出版商: W. W. Norton
  • 出版日期: 2018-01-10
  • 售價: $890
  • 貴賓價: 9.5$846
  • 語言: 英文
  • 頁數: 104
  • 裝訂: Paperback
  • ISBN: 1984050621
  • ISBN-13: 9781984050625
  • 相關分類: DeepLearningData Science
  • 無法訂購

相關主題

商品描述

Free Kindle eBook for customers who purchase the print book from Amazon


Are you thinking of learning more about Deep Learning without Maths?

This book has been written in layman's terms as an introduction to deep learning and neural networks and their algorithms. Each algorithm is explained very easily for more understanding.

 Several Visual Illustrations and Examples

Instead of tough math formulas, this book contains several graphs and images which detail all algorithms and their applications in all area of the real life.

 Why this book is different ?

This book will help you explore exactly what deep learning is and will also teach you about why it is so revolutionary and fascinating. The chapters will introduce the reader to the concepts, techniques, and applications of deep learning algorithms with the practical case studies and walk-through examples on which to practice.

This book takes a different approach that is based on providing simple examples of how deep learning algorithms work, and building on those examples step by step to encompass the more complicated parts of the algorithms. 

Target Users

The book designed for a variety of target audiences. The most suitable users would include: 
  • Beginners who want to approach deep learning, but are too afraid of complex math to start

  • Newbies in computer science techniques and deep learning
  • Professionals in data science and social sciences
  • Professors, lecturers or tutors who are looking to find better ways to explain the content to their students in the simplest and easiest way 
  • Students and academicians, especially those focusing on neural networks and deep learning

What’s inside this book?

  • Deep Learning: What & Why?
  • Pre-requisite for Deep Learning
  • Artificial Neural Networks: what and why?
  • General Presentation of Deep Learning
  • Multilayer Perceptron and Backpropagation: How they are work?
  • Convolutional Neural Networks (CNN): How it is works?
  • Other Deep Learning Algorithms
  • Deep Learning Applications
  • Our Future with Deep Learning Applied
  • The Long-Term Vision of Deep Learning

商品描述(中文翻譯)

免費 Kindle 電子書供從 Amazon 購買印刷書籍的客戶使用

你是否考慮過在不學數學的情況下深入了解深度學習?

本書以通俗易懂的語言撰寫,作為深度學習、神經網絡及其算法的入門介紹。每個算法都以非常簡單的方式解釋,以便更好地理解。

幾個視覺插圖和範例

本書不使用複雜的數學公式,而是包含多個圖表和圖片,詳細說明所有算法及其在現實生活中的應用。

為什麼這本書與眾不同?

本書將幫助你準確探索深度學習的本質,並教你為什麼它如此革命性和迷人。各章節將向讀者介紹深度學習算法的概念、技術和應用,並提供實際案例研究和逐步示範範例以供練習。

本書採取不同的方法,基於提供簡單的範例來說明深度學習算法的運作,並逐步建立這些範例,以涵蓋算法中更複雜的部分。

目標讀者

本書設計針對多種目標讀者。最合適的使用者包括:
- 想接觸深度學習但因為複雜的數學而感到害怕的初學者
- 計算機科學技術和深度學習的新手
- 數據科學和社會科學的專業人士
- 尋求以最簡單易懂的方式向學生解釋內容的教授、講師或導師
- 學生和學者,特別是專注於神經網絡和深度學習的人

這本書裡面有什麼?

- 深度學習:什麼與為什麼?
- 深度學習的前提條件
- 人工神經網絡:什麼與為什麼?
- 深度學習的一般介紹
- 多層感知器和反向傳播:它們是如何工作的?
- 卷積神經網絡 (CNN):它是如何工作的?
- 其他深度學習算法
- 深度學習的應用
- 我們與深度學習的未來
- 深度學習的長期願景