買這商品的人也買了...
-
$180$142 -
$580$493 -
$520$468 -
$820$648 -
$590$460 -
$520$411 -
$399CompTIA Security+ Study Guide: Exam SY0-301, 5/e (Paperback)
-
$540$421 -
$600$468 -
$880$695 -
$780$663 -
$680$578 -
$780$616 -
$480$379 -
$1,520$1,444 -
$550$468 -
$780$663 -
$860$774 -
$680$537 -
$580$452 -
$360$306 -
$480$408 -
$580$458 -
$360$284 -
$620$484
相關主題
商品描述
Summary
Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook.
About the TechnologyA computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others.
About this BookThis book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework.
This book is written for developers familiar with Java - no prior experience with Mahout is assumed.
What's Inside- Use group data to make individual recommendations
- Find logical clusters within your data
- Filter and refine with on-the-fly classification
- Free audio and video extras
PART 1 RECOMMENDATIONS
PART 2 CLUSTERING
PART 3 CLASSIFICATION
- Meet Apache Mahout
- Introducing recommenders
- Representing recommender data
- Making recommendations
- Taking recommenders to production
- Distributing recommendation computations
- Introduction to clustering
- Representing data
- Clustering algorithms in Mahout
- Evaluating and improving clustering quality
- Taking clustering to production
- Real-world applications of clustering
- Introduction to classification
- Training a classifier
- Evaluating and tuning a classifier
- Deploying a classifier
- Case study: Shop It To Me
商品描述(中文翻譯)
摘要
《Mahout in Action》是一本實踐機器學習的Apache Mahout入門書籍。通過真實世界的例子,本書介紹了實際應用案例,並展示了如何應用Mahout來解決問題。附帶免費的音頻和視頻增強電子書。
關於技術
一個能夠在收集數據的同時學習和適應的計算機系統可以非常強大。Apache的開源機器學習項目Mahout捕捉了推薦系統、分類和聚類的核心算法,並提供了可用的可擴展庫。使用Mahout,您可以立即將驅動Amazon、Netflix等公司的機器學習技術應用於自己的項目中。
關於本書
本書介紹了使用Apache Mahout進行機器學習。基於實際應用經驗,它介紹了實際應用案例,並展示了如何應用Mahout來解決問題。特別關注可擴展性問題以及如何使用Apache Hadoop框架對大數據集應用這些技術。
本書針對熟悉Java的開發人員撰寫,不需要先前的Mahout經驗。
內容簡介
- 使用群組數據進行個別推薦
- 在數據中找到邏輯聚類
- 通過即時分類進行過濾和精煉
- 免費音頻和視頻附加內容
目錄
第1部分 推薦
第2部分 聚類
第3部分 分類
- 認識Apache Mahout
- 介紹推薦系統
- 表示推薦系統數據
- 進行推薦
- 將推薦系統應用於生產環境
- 分佈式推薦計算
- 聚類介紹
- 表示數據
- Mahout中的聚類算法
- 評估和改進聚類質量
- 將聚類應用於生產環境
- 聚類的實際應用
- 分類介紹
- 訓練分類器
- 評估和調整分類器
- 部署分類器
- 案例研究:Shop It To Me