Extending Power BI with Python and R - Second Edition: Perform advanced analysis using the power of analytical languages
Zavarella, Luca
- 出版商: Packt Publishing
- 出版日期: 2024-03-29
- 售價: $2,240
- 貴賓價: 9.5 折 $2,128
- 語言: 英文
- 頁數: 814
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1837639531
- ISBN-13: 9781837639533
-
相關分類:
Power BI、Python、程式語言、R 語言
海外代購書籍(需單獨結帳)
相關主題
商品描述
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities.
Purchase of the print or Kindle book includes a free eBook in PDF format.
Key Features- Discover best practices for using Python and R in Power BI by implementing non-trivial code
- Enrich your Power BI dashboards using external APIs and machine learning models
- Create any visualization, as complex as you want, using Python and R scripts
The latest edition of this book delves deeper into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond laptop RAM, employing parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server External Languages to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the grammar of graphics in both R and Python.
This PowerBI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. Next, you'll learn to Safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of data sets by plotting multiple visual graphs in the process of building a machine-learning model. The book will guide you to Utilize external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis.
You'll also be able to reinforce learning with questions at the end of each chapter.
What you will learn- Configure optimal integration of Python and R with Power BI
- Perform complex data manipulations not possible by default in Power BI
- Boost Power BI logging and loading large datasets
- Extract insights from your data using algorithms like linear optimization
- Calculate string distances and learn how to use them for probabilistic fuzzy matching
- Handle outliers and missing values for multivariate and time-series data
- Apply Exploratory Data Analysis in Power BI with R
- Learn to use Grammar of Graphics in Python
This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Table of Contents- Where and How to Use R and Python Scripts in Power BI
- Configuring R with Power BI
- Configuring Python with Power BI
- Solving Common Issues When Using Python and R in Power BI
- Importing Unhandled Data Objects
- Using Regular Expressions in Power BI
- Anonymizing and Pseudonymizing your Data in Power BI
- Logging Data from Power BI to External Sources
- Loading Large Datasets Also Beyond the Available RAM in Power BI
- Optimizing the Loading Time of Referenced Queries in Power BI
- Calling External APIs To Enrich Your Data
- Calculating Columns Using Complex Algorithms: Distances
- Calculating Columns Using Complex Algorithms: Fuzzy Matching
- Calculating Columns Using Complex Algorithms: Optimization Problems
- Adding Statistics Insights: Associations
- Adding Statistics Insights: Outliers and Missing Values
(N.B. Please use the Look Inside option to see further chapters)
商品描述(中文翻譯)
在Power BI的能力之外,將您的數據進行摄取、轉換、操作和可視化。
購買印刷版或Kindle電子書,將包含一本PDF格式的免費電子書。
主要特點:
- 通過實施非平凡的代碼,探索在Power BI中使用Python和R的最佳實踐。
- 使用外部API和機器學習模型豐富您的Power BI儀表板。
- 使用Python和R腳本創建任何複雜的可視化。
書籍描述:
本書的最新版本更深入地探討了高級分析,重點是在Power BI中提高Python和R的熟練度。新章節涵蓋了優化Python和R設置、利用英特爾的Math Kernel Library(MKL)提升性能以及解決集成挑戰的方法。探討了管理超出筆記本RAM的大型數據集的技術,使用parquet數據格式和高級模糊匹配算法。此外,它還討論了利用SQL Server外部語言來克服Power BI中傳統Python和R的限制。它還幫助使用R和Python的圖形語法來創建複雜的可視化。
這本Power BI書籍將幫助您通過正則表達式掌握數據驗證,從不同來源導入數據,並應用高級算法進行轉換。接下來,您將學習使用偽名化、匿名化和數據遮罩等技術在Power BI中保護個人數據。您還將在構建機器學習模型的過程中,通過繪製多個視覺圖形來瞭解數據集的關鍵統計特徵。本書將指導您使用外部API進行豐富,提高I/O性能,並利用Python和R進行分析。
您還可以通過每章結尾的問題來加強學習。
您將學到:
- 配置Python和R與Power BI的最佳集成。
- 在Power BI中執行無法默認完成的複雜數據操作。
- 提升Power BI的日誌記錄和加載大型數據集的能力。
- 使用線性優化等算法從數據中提取洞察。
- 計算字符串距離並學習如何在概率模糊匹配中使用它們。
- 處理多變量和時間序列數據的異常值和缺失值。
- 在Power BI中應用探索性數據分析。
- 學習在Python中使用圖形語法。
本書適合對象:
本書適合商業分析師、商業智能專業人士和數據科學家,他們已經使用Microsoft Power BI並希望通過使用Python和R為分析增加更多價值。需要具備Power BI的工作知識才能充分利用本書。基本的Python和R知識也將有所幫助。
目錄:
1. 在Power BI中使用R和Python腳本的位置和方式
2. 配置Power BI中的R
3. 配置Power BI中的Python
4. 在Power BI中使用Python和R時解決常見問題
5. 導入未處理的數據對象
6. 在Power BI中使用正則表達式
7. 在Power BI中對數據進行匿名化和偽名化
8. 從Power BI記錄數據到外部源
9. 在Power BI中加載超出可用RAM的大型數據集
10. 優化Power BI中引用查詢的加載時間
11. 調用外部API來豐富您的數據
12. 使用複雜算法計算列:距離
13. 使用複雜算法計算列:模糊匹配
14. 使用複雜算法計算列:優化問題
15. 添加統計洞察:關聯
16. 添加統計洞察:異常值和缺失值
(請使用“查看內容”選項查看更多章節)