Generative AI Application Integration Patterns: Integrate large language models into your applications (生成式AI應用整合模式:將大型語言模型整合進你的應用程式)
Bustos, Juan Pablo, Soria, Luis Lopez
- 出版商: Packt Publishing
- 出版日期: 2024-09-05
- 售價: $1,900
- 貴賓價: 9.5 折 $1,805
- 語言: 英文
- 頁數: 218
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1835887600
- ISBN-13: 9781835887608
-
相關分類:
LangChain、人工智慧
立即出貨 (庫存=1)
相關主題
商品描述
Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations.
Key Features:
- Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps
- Interact with GenAI models to tailor model behavior to minimize hallucinations
- Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications
Book Description:
Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI.
With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource helps readers harness these technologies through proven design patterns.
We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. Readers will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought.
Additionally, the authors provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development. Techniques for transparency, auditing, and governance as crucial design patterns.
What You Will Learn:
- Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and Retrieval Augmented Generation (RAG)
- Framework for integrating AI, entry points, prompt pre-processing, inference, post-processing, and presentation
- Patterns for batch and real-time integration
- Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more
- Ethical use: bias mitigation, data privacy, and monitoring
- Deployment and hosting options for GenAI models
Who this book is for:
This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include:
Developer engineers with foundational tech knowledge
Software architects seeking best practices and design patterns
Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI
Technical product managers with a software development background
This concise focus ensures practical, actionable insights for experienced professionals
Table of Contents
- Introduction to Generative AI Design Patterns
- Identifying Generative AI Use Cases
- Designing Patterns for Interacting with Generative AI
- Generative AI Batch & Real-time Integration Patterns
- Integration Pattern: Batch Metadata Extraction
- Integration Pattern: Batch Summarization
- Integration Pattern: Real-Time Intent Classification
- Integration Pattern: Real-Time Retrieval Augmented Generation
- Operationalizing Generative AI Integration Patterns
- Embedding Responsible AI into your GenAI Applications
商品描述(中文翻譯)
釋放 GenAI 的轉型潛力,這本全面的指南是將大型語言模型整合到現實應用中的不可或缺的路線圖。獲得有關識別引人注目的使用案例、有效利用最先進模型、將這些模型大規模部署到您的應用程序中以及應對倫理考量的寶貴見解。
主要特點:
- 熟悉在實際情境中設計 GenAI 應用所需的最重要工具和概念
- 與 GenAI 模型互動,以調整模型行為以最小化幻覺
- 熟悉各種策略和易於遵循的四步框架,以將 GenAI 整合到應用中
書籍描述:
探索 GenAI 在應用開發生命周期中的轉型潛力。通過具體示例,您將了解構思和整合的過程,理解整合 GenAI 時的權衡和決策點。
隨著 Google Gemini、Anthropic Claude、DALL-E 和 GPT-4o 等模型的最新進展,這本及時的資源幫助讀者通過經驗證的設計模式來利用這些技術。
接著,我們深入探討 GenAI 的實際應用,識別常見的使用案例並應用設計模式來解決現實挑戰。從摘要和元數據提取到意圖分類和問題回答,每一章都提供實用的示例和藍圖,以便在不同領域和任務中利用 GenAI。讀者將學習如何為特定應用微調模型,從基本提示進展到更複雜的策略,如檢索增強生成(RAG)和思維鏈。
此外,作者提供了關於模型運營化的端到端指導,包括數據準備、訓練、部署和監控。我們還專注於負責任和倫理的開發,將透明度、審計和治理技術視為關鍵設計模式。
您將學到的內容:
- GenAI 的概念:預訓練、微調、提示工程和檢索增強生成(RAG)
- 整合 AI 的框架、切入點、提示預處理、推理、後處理和呈現
- 批量和實時整合的模式
- 用於元數據提取、摘要、意圖分類、使用 RAG 的問題回答等的代碼示例
- 倫理使用:偏見緩解、數據隱私和監控
- GenAI 模型的部署和託管選項
本書適合對象:
這本書不是 AI/ML 或 Python 的入門書。它提供了設計、構建和部署 GenAI 應用的實用指南。雖然所有讀者都歡迎,但最受益的包括:
- 具備基礎技術知識的開發工程師
- 尋求最佳實踐和設計模式的軟體架構師
- 使用 ML 進行數據科學、研究等的專業人士,想要更深入了解生成式 AI
- 具備軟體開發背景的技術產品經理
這種簡潔的重點確保為經驗豐富的專業人士提供實用且可行的見解。
目錄:
- 生成式 AI 設計模式介紹
- 識別生成式 AI 使用案例
- 與生成式 AI 互動的設計模式
- 生成式 AI 批量與實時整合模式
- 整合模式:批量元數據提取
- 整合模式:批量摘要
- 整合模式:實時意圖分類
- 整合模式:實時檢索增強生成
- 運營化生成式 AI 整合模式
- 將負責任的 AI 嵌入您的 GenAI 應用中