Building AI Agents with LLMs, RAG, and Knowledge Graphs: A practical guide to autonomous and modern AI agents (Paperback)
暫譯: 使用 LLM、RAG 和知識圖譜構建 AI 代理:自主與現代 AI 代理的實用指南 (平裝本)

Raieli, Salvatore, Iuculano, Gabriele

買這商品的人也買了...

相關主題

商品描述

Master LLM fundamentals to advanced techniques like RAG, reinforcement learning, and knowledge graphs to build, deploy, and scale intelligent AI agents that reason, retrieve, and act autonomously

Key Features:

- Implement RAG and knowledge graphs for advanced problem-solving

- Leverage innovative approaches like LangChain to create real-world intelligent systems

- Integrate large language models, graph databases, and tool use for next-gen AI solutions

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

This AI agents book addresses the challenge of building AI that not only generates text but also grounds its responses in real data and takes action. Authored by AI specialists with deep expertise in drug discovery and systems optimization, this guide empowers you to leverage retrieval-augmented generation (RAG), knowledge graphs, and agent-based architectures to engineer truly intelligent behavior. By combining large language models (LLMs) with up-to-date information retrieval and structured knowledge, you'll create AI agents capable of deeper reasoning and more reliable problem-solving.

Inside, you'll find a practical roadmap from concept to implementation. You'll discover how to connect language models with external data via RAG pipelines for increasing factual accuracy and incorporate knowledge graphs for context-rich reasoning. The chapters will help you build and orchestrate autonomous agents that combine planning, tool use, and knowledge retrieval to achieve complex goals. Concrete Python examples built on popular libraries, along with real-world case studies, reinforce each concept and show you how these techniques come together.

By the end of this book, you'll be well-equipped to build intelligent AI agents that reason, retrieve, and interact dynamically, empowering you to deploy powerful AI solutions across industries.

What You Will Learn:

- Learn how LLMs work, their structure, uses, and limits, and design RAG pipelines to link them to external data

- Build and query knowledge graphs for structured context and factual grounding

- Develop AI agents that plan, reason, and use tools to complete tasks

- Integrate LLMs with external APIs and databases to incorporate live data

- Apply techniques to minimize hallucinations and ensure accurate outputs

- Orchestrate multiple agents to solve complex, multi-step problems

- Optimize prompts, memory, and context handling for long-running tasks

- Deploy and monitor AI agents in production environments

Who this book is for:

If you are a data scientist or researcher who wants to learn how to create and deploy an AI agent to solve limitless tasks, this book is for you. To get the most out of this book, you should have basic knowledge of Python and Gen AI. This book is also excellent for experienced data scientists who want to explore state-of-the-art developments in LLM and LLM-based applications.

Table of Contents

- Analyzing Text Data with Deep Learning

- The Transformer: The Model Behind the Modern AI Revolution

- Exploring LLMs as a Powerful AI Engine

- Building a Web Scraping Agent with an LLM

- Extending Your Agent with RAG to Prevent Hallucinations

- Advanced RAG Techniques for Information Retrieval and Augmentation

- Creating and Connecting a Knowledge Graph to an AI Agent

- Reinforcement Learning and AI Agents

- Creating Single- and Multi-Agent Systems

- Building an AI Agent Application

- The Future Ahead

商品描述(中文翻譯)

**掌握 LLM 基礎知識到進階技術,如 RAG、強化學習和知識圖譜,以建立、部署和擴展能夠自主推理、檢索和行動的智能 AI 代理**

**主要特點:**

- 實施 RAG 和知識圖譜以進行高級問題解決
- 利用 LangChain 等創新方法創建現實世界的智能系統
- 整合大型語言模型、圖形資料庫和工具使用以實現下一代 AI 解決方案
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書

**書籍描述:**

本書探討了建立不僅能生成文本,還能基於真實數據進行回應並採取行動的 AI 的挑戰。由在藥物發現和系統優化方面具有深厚專業知識的 AI 專家撰寫,本指南使您能夠利用檢索增強生成(RAG)、知識圖譜和基於代理的架構來設計真正智能的行為。通過將大型語言模型(LLMs)與最新的信息檢索和結構化知識相結合,您將創建能夠進行更深層推理和更可靠問題解決的 AI 代理。

在書中,您將找到從概念到實施的實用路線圖。您將學會如何通過 RAG 管道將語言模型與外部數據連接,以提高事實準確性,並整合知識圖譜以進行豐富的上下文推理。各章將幫助您構建和協調自主代理,結合計劃、工具使用和知識檢索以實現複雜目標。具體的 Python 範例基於流行的庫,並結合現實案例研究,強化每個概念並展示這些技術如何結合在一起。

到本書結束時,您將能夠建立能夠推理、檢索和動態互動的智能 AI 代理,使您能夠在各行各業中部署強大的 AI 解決方案。

**您將學到的內容:**

- 了解 LLM 的工作原理、結構、用途和限制,並設計 RAG 管道將其連接到外部數據
- 構建和查詢知識圖譜以獲得結構化上下文和事實基礎
- 開發能夠計劃、推理和使用工具來完成任務的 AI 代理
- 將 LLM 與外部 API 和資料庫整合,以納入即時數據
- 應用技術以最小化幻覺並確保準確輸出
- 協調多個代理以解決複雜的多步問題
- 優化提示、記憶和上下文處理以應對長時間運行的任務
- 在生產環境中部署和監控 AI 代理

**本書適合誰:**

如果您是希望學習如何創建和部署 AI 代理以解決無限任務的數據科學家或研究人員,本書適合您。為了充分利用本書,您應具備基本的 Python 和生成 AI 知識。本書對於希望探索 LLM 和基於 LLM 的應用的經驗豐富的數據科學家也非常適合。

**目錄**

- 使用深度學習分析文本數據
- 變壓器:現代 AI 革命背後的模型
- 探索 LLM 作為強大的 AI 引擎
- 使用 LLM 構建網頁抓取代理
- 擴展您的代理以使用 RAG 防止幻覺
- 用於信息檢索和增強的高級 RAG 技術
- 創建並連接知識圖譜到 AI 代理
- 強化學習和 AI 代理
- 創建單一和多代理系統
- 構建 AI 代理應用
- 未來展望