Polars Cookbook: Over 60 practical recipes to transform, manipulate, and analyze your data using Python Polars 1.x

Kakegawa, Yuki, Gorelli, Marco

  • 出版商: Packt Publishing
  • 出版日期: 2024-08-23
  • 售價: $2,070
  • 貴賓價: 9.5$1,967
  • 語言: 英文
  • 頁數: 394
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1805121154
  • ISBN-13: 9781805121152
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Leverage a lightning fast DataFrame library for efficient data wrangling in Python

Key Features:

- Unlock the power of Python Polars for faster and more efficient data analysis workflows

- Master the fundamentals of Python Polars with step-by-step recipes

- Discover data manipulation techniques to apply across multiple data problems

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Polars Cookbook is a complete guide that not only helps you get started with Python Polars but also gives you effective solutions to your day-to-day data problems. Dive into the world of Polars, a high-performance DataFrame library designed for efficient data processing and analysis. This cookbook takes a practical approach to unlocking the full potential of Polars through detailed, step-by-step recipes.

Starting with installation and basic operations, this book guides you through data manipulation, advanced querying, and performance optimization techniques. You'll learn how to handle large datasets, perform complex transformations, and leverage Polars' powerful features for data science tasks. As you progress, you'll explore Polars' integration with other tools and libraries, and discover how to deploy Polars in both onpremises and cloud environments. You'll also explore use cases for data engineering, time series analysis, statistical analysis, and machine learning, providing essential strategies for securing and optimizing your Polars workflows.

By the end of this book, you'll have acquired the knowledge and skills to build scalable, efficient, and reliable data processing solutions using Polars.

What You Will Learn:

- Read from different data sources and write to various files and databases

- Apply aggregations, window functions, and string manipulations

- Perform common data tasks such as handling missing values and performing list and array operations

- Discover how to reshape and tidy your data by pivoting, joining, and concatenating

- Analyze your time series data in Python Polars

- Create better workflows with testing and debugging

Who this book is for:

This book is for data analysts, data scientists, and data engineers who want to learn how to use Polars in their workflows. Working knowledge of the Python programming language is required. Experience working with a DataFrame library such as pandas or PySpark will also be helpful.

Table of Contents

- Getting Started with Python Polars

- Reading and Writing Files

- An Introduction to Data Analysis in Python Polars

- Data Transformation Techniques

- Handling Missing Data

- Performing String Manipulations

- Working with Nested Data Structures

- Reshaping and Tidying data

- Time Series Analysis

- Interoperability with Other Python Libraries

- Working with Common Cloud Data Sources

- Testing and Debugging in Polars

商品描述(中文翻譯)

利用快速的 DataFrame 函式庫在 Python 中進行高效的數據處理

主要特點:
- 解鎖 Python Polars 的力量,以實現更快速和高效的數據分析工作流程
- 通過逐步食譜掌握 Python Polars 的基本概念
- 探索可應用於多種數據問題的數據操作技術
- 購買印刷版或 Kindle 版書籍可獲得免費 PDF 電子書

書籍描述:
《Polars Cookbook》是一本完整的指南,不僅幫助您入門 Python Polars,還提供有效的解決方案來應對日常數據問題。深入了解 Polars,這是一個高效的 DataFrame 函式庫,旨在進行高效的數據處理和分析。本食譜以實用的方式解鎖 Polars 的全部潛力,通過詳細的逐步食譜進行說明。

本書從安裝和基本操作開始,指導您進行數據操作、高級查詢和性能優化技術。您將學會如何處理大型數據集、執行複雜的轉換,並利用 Polars 的強大功能進行數據科學任務。隨著進展,您將探索 Polars 與其他工具和函式庫的整合,並了解如何在本地和雲端環境中部署 Polars。您還將探索數據工程、時間序列分析、統計分析和機器學習的使用案例,提供確保和優化 Polars 工作流程的基本策略。

在本書結束時,您將獲得使用 Polars 構建可擴展、高效和可靠的數據處理解決方案的知識和技能。

您將學到的內容:
- 從不同數據來源讀取並寫入各種文件和數據庫
- 應用聚合、窗口函數和字串操作
- 執行常見的數據任務,例如處理缺失值和執行列表及數組操作
- 探索如何通過樞紐分析、聯接和串接來重塑和整理數據
- 在 Python Polars 中分析您的時間序列數據
- 通過測試和除錯創建更好的工作流程

本書適合對象:
本書適合希望在工作流程中學習如何使用 Polars 的數據分析師、數據科學家和數據工程師。需要具備 Python 程式語言的工作知識。擁有使用 pandas 或 PySpark 等 DataFrame 函式庫的經驗也將有所幫助。

目錄:
- 開始使用 Python Polars
- 讀取和寫入文件
- Python Polars 中的數據分析簡介
- 數據轉換技術
- 處理缺失數據
- 執行字串操作
- 處理嵌套數據結構
- 重塑和整理數據
- 時間序列分析
- 與其他 Python 函式庫的互操作性
- 與常見雲端數據來源的協作
- 在 Polars 中進行測試和除錯