Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI
Walker, Michael
- 出版商: Packt Publishing
- 出版日期: 2024-05-31
- 售價: $2,010
- 貴賓價: 9.5 折 $1,910
- 語言: 英文
- 頁數: 486
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803239875
- ISBN-13: 9781803239873
-
相關分類:
Python、程式語言
海外代購書籍(需單獨結帳)
相關主題
商品描述
Learn the intricacies of data description, issue identification, and practical problem-solving, armed with essential techniques and expert tips.
Key Features:- Get to grips with new techniques for data preprocessing and cleaning for machine learning and NLP models
- Use new and updated AI tools and techniques for data cleaning tasks
- Clean, monitor, and validate large data volumes to diagnose problems using cutting-edge methodologies including Machine learning and AI
Book Description:Jumping into data analysis without proper data cleaning will certainly lead to incorrect results. The Python Data Cleaning Cookbook will show you tools and techniques for cleaning and handling data with Python for better outcomes.
Fully updated to the latest version of Python and all relevant tools, this book will teach you how to manipulate and clean data to get it into a useful form. The current edition emphasizes advanced techniques like machine learning and AI-specific approaches and tools to data cleaning along with the conventional ones. The book also delves into tips and techniques to process and clean data for ML, AI and NLP models You will learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Next, you'll cover recipes for using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors and generate visualizations for exploratory data analysis (EDA) to identify unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data.
By the end of this Data Cleaning book, you'll know how to clean data and diagnose problems within it.
What You Will Learn:- Using OpenAI tools for various data cleaning tasks
- Produce summaries of the attributes of datasets, columns, and rows
- Anticipating Data Cleaning Issues when Importing Tabular Data into Pandas
- Apply validation techniques for imported tabular data
- Improve your productivity in Python pandas by using method chaining
- Recognize and resolve common issues like dates and IDs
- Set up indexes to streamline data issue identification
- Use data cleaning to prepare your data for ML and AI models
Who this book is for:This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data with practical examples.
Working knowledge of Python programming is all you need to get the most out of the book.
商品描述(中文翻譯)
學習數據描述、問題識別和實際問題解決的細節,掌握必要的技巧和專家建議。
主要特點:
- 掌握用於機器學習和自然語言處理模型的數據預處理和清理的新技術。
- 使用新的和更新的人工智能工具和技術進行數據清理任務。
- 使用包括機器學習和人工智能在內的尖端方法,對大量數據進行清理、監控和驗證,以診斷問題。
書籍描述:
在沒有進行適當的數據清理的情況下進行數據分析,必然會導致不正確的結果。《Python數據清理食譜》將向您展示使用Python進行數據清理和處理的工具和技術,以獲得更好的結果。
本書已完全更新到最新版本的Python和所有相關工具,將教您如何操作和清理數據,使其變得有用。本版強調了先進的技術,如機器學習和人工智能特定的方法和工具,以及傳統方法。本書還深入探討了處理和清理ML、AI和NLP模型數據的技巧和技術。您將學習如何過濾和總結數據,獲得洞察力,更好地理解什麼是有意義的,什麼是無意義的,以及如何處理已識別的問題。接下來,您將學習使用監督學習和朴素貝葉斯分析來識別意外值和分類錯誤,並生成探索性數據分析(EDA)的可視化圖表來識別意外值。最後,您將構建可以在有新數據時無需修改即可重複使用的函數和類。
通過閱讀本書,您將學會如何清理數據並診斷其中的問題。
您將學到:
- 使用OpenAI工具進行各種數據清理任務。
- 生成數據集、列和行屬性的摘要。
- 在導入Pandas時預測數據清理問題。
- 對導入的表格數據應用驗證技術。
- 通過使用方法鏈式編程提高Python pandas的生產力。
- 識別和解決常見問題,如日期和ID。
- 設置索引以加快數據問題識別的速度。
- 使用數據清理為您的ML和AI模型準備數據。
本書適合尋找使用不同的Python工具和技術處理混亂、重複和低質數據的人。本書採用基於食譜的方法,通過實際示例幫助您學習如何清理和管理數據。
只需具備Python編程的基本知識,您就能充分利用本書。