Deep Learning with PyTorch Lightning: Swiftly build high-performance Artificial Intelligence (AI) models using Python
暫譯: 使用 PyTorch Lightning 深度學習:快速構建高效能人工智慧 (AI) 模型的 Python 方法

Sawarkar, Kunal

買這商品的人也買了...

相關主題

商品描述

Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper


Key Features:

  • Become well-versed with PyTorch Lightning architecture and learn how it can be implemented in various industry domains
  • Speed up your research using PyTorch Lightning by creating new loss functions, networks, and architectures
  • Train and build new algorithms for massive data using distributed training


Book Description:

PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize productivity for DL projects while ensuring full flexibility from model formulation through to implementation. You'll take a hands-on approach to implementing PyTorch Lightning models to get up to speed in no time.

You'll start by learning how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. Next, you'll build a network and application from scratch and see how you can expand it based on your specific needs, beyond what the framework can provide. The book also demonstrates how to implement out-of-box capabilities to build and train Self-Supervised Learning, semi-supervised learning, and time series models using PyTorch Lightning. As you advance, you'll discover how generative adversarial networks (GANs) work. Finally, you'll work with deployment-ready applications, focusing on faster performance and scaling, model scoring on massive volumes of data, and model debugging.

By the end of this PyTorch book, you'll have developed the knowledge and skills necessary to build and deploy your own scalable DL applications using PyTorch Lightning.


What You Will Learn:

  • Customize models that are built for different datasets, model architectures, and optimizers
  • Understand how a variety of Deep Learning models from image recognition and time series to GANs, semi-supervised and self-supervised models can be built
  • Use out-of-the-box model architectures and pre-trained models using transfer learning
  • Run and tune DL models in a multi-GPU environment using mixed-mode precisions
  • Explore techniques for model scoring on massive workloads
  • Discover troubleshooting techniques while debugging DL models


Who this book is for:

This deep learning book is for citizen data scientists and expert data scientists transitioning from other frameworks to PyTorch Lightning. This book will also be useful for deep learning researchers who are just getting started with coding for deep learning models using PyTorch Lightning. Working knowledge of Python programming and an intermediate-level understanding of statistics and deep learning fundamentals is expected.

商品描述(中文翻譯)

快速且準確地構建、訓練、部署和擴展深度學習模型,利用輕量級的 PyTorch Wrapper 提升您的生產力

主要特點:


  • 熟悉 PyTorch Lightning 架構,了解如何在各種行業領域中實施它

  • 通過創建新的損失函數、網絡和架構,使用 PyTorch Lightning 加速您的研究

  • 使用分佈式訓練訓練和構建針對大量數據的新算法

書籍描述:
PyTorch Lightning 讓研究人員能夠構建自己的深度學習 (DL) 模型,而無需擔心樣板代碼。在這本書的幫助下,您將能夠最大化 DL 項目的生產力,同時確保從模型公式化到實施的完全靈活性。您將採取實踐的方法來實施 PyTorch Lightning 模型,迅速上手。

您將首先學習如何在雲平台上配置 PyTorch Lightning,了解架構組件,並探索它們如何配置以構建各種行業解決方案。接下來,您將從零開始構建一個網絡和應用程序,並查看如何根據您的具體需求擴展它,超越框架所能提供的功能。這本書還演示了如何實施即用型功能,以使用 PyTorch Lightning 構建和訓練自我監督學習、半監督學習和時間序列模型。隨著進展,您將發現生成對抗網絡 (GANs) 的工作原理。最後,您將處理準備部署的應用程序,專注於更快的性能和擴展、大量數據的模型評分以及模型調試。

在這本 PyTorch 書籍結束時,您將具備構建和部署自己的可擴展 DL 應用程序所需的知識和技能,使用 PyTorch Lightning。

您將學到什麼:


  • 自定義針對不同數據集、模型架構和優化器構建的模型

  • 了解如何構建各種深度學習模型,從圖像識別和時間序列到 GANs、半監督和自我監督模型

  • 使用即用型模型架構和預訓練模型,利用轉移學習

  • 在多 GPU 環境中運行和調整 DL 模型,使用混合精度

  • 探索在大量工作負載上進行模型評分的技術

  • 發現調試 DL 模型時的故障排除技術

本書適合誰:
這本深度學習書籍適合公民數據科學家和從其他框架轉向 PyTorch Lightning 的專家數據科學家。這本書對於剛開始使用 PyTorch Lightning 編碼深度學習模型的深度學習研究人員也將非常有用。預期具備 Python 編程的工作知識,以及對統計學和深度學習基礎的中級理解。