Hands-On Machine Learning with ML.NET (Paperback)
暫譯: 實戰機器學習與 ML.NET (平裝本)
Capellman, Jarred
- 出版商: Packt Publishing
- 出版日期: 2020-03-27
- 售價: $1,770
- 貴賓價: 9.5 折 $1,682
- 語言: 英文
- 頁數: 296
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789801788
- ISBN-13: 9781789801781
-
相關分類:
AI Coding
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback) -
$796深度學習 -
領域驅動設計:軟體核心複雜度的解決方法 (Domain-Driven Design: Tackling Complexity in the Heart of Software)$680$530 -
輕鬆學會 LINE 程式設計與 AI 聊天機器人實作開發$520$406 -
$749Hands-On Software Architecture with C# 8 -
ASP.NET Core 3 and React$1,620$1,539 -
手機攝影必學 BOOK:用OX帶你學會拍人物、食物、風景等情境照片$398$299 -
機器學習的數學:用數學引領你走進 AI 的神秘世界$580$452 -
Web 開發者一定要懂的駭客攻防術 (Web Security for Developers: Real Threats, Practical Defense)$420$332 -
CQRS 命令查詢職責分離模式 (Command Query Responsibility Segregation)$500$390 -
領域驅動設計與 .NET Core:應用 DDD 原則,探索軟體核心複雜度 (Hands-On Domain-Driven Design with .NET Core)$780$608 -
資料科學的統計實務 : 探索資料本質、扎實解讀數據,才是機器學習成功建模的第一步$599$473 -
資安這條路:領航新手的 Web Security 指南,以自建漏洞環境學習網站安全(iT邦幫忙鐵人賽系列書)$680$578 -
複雜架構極簡化:領域驅動設計(DDD)10倍程式開發速度$1,000$790 -
Martin Fowler 的企業級軟體架構模式:軟體重構教父傳授 51個模式,活用設計思考與架構決策 (Patterns of Enterprise Application Architecture)$800$624 -
我懂了!專案管理 (暢銷紀念版)$400$316 -
電腦視覺機器學習實務|建立端到端的影像機器學習 (Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images)$780$616 -
Learning Blazor: Build Single-Page Apps with Webassembly and C# (Paperback)$2,185$2,070 -
ASP.NET Core Razor Pages in Action (Paperback)$2,300$2,185 -
OAuth 2.0 從入門到實戰:利用驗證和授權守護 API 的安全$600$468 -
LangChain 奇幻旅程:OpenAI x Gemini x 多模態應用開發指南$680$530 -
無瑕的程式碼 軟體工匠篇:程式設計師必須做到的紀律、標準與倫理 (Clean Craftsmanship: Disciplines, Standards, and Ethics)$720$562 -
從源頭就優化 - 動手開發自己的編譯器實戰$880$695 -
UX 商業價值實現之道|打造成功的數位產品服務 (UX for Business: How to Design Valuable Digital Companies)$780$616 -
建構可擴展系統|設計分散式架構 (Foundations of Scalable Systems: Designing Distributed Architectures)$780$616
相關主題
商品描述
Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core
Key Features
- Get well-versed with the ML.NET framework and its components and APIs using practical examples
- Learn how to build, train, and evaluate popular machine learning algorithms with ML.NET offerings
- Extend your existing machine learning models by integrating with TensorFlow and other libraries
Book Description
Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code.
The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR.
By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET.
What you will learn
- Understand the framework, components, and APIs of ML.NET using C#
- Develop regression models using ML.NET for employee attrition and file classification
- Evaluate classification models for sentiment prediction of restaurant reviews
- Work with clustering models for file type classifications
- Use anomaly detection to find anomalies in both network traffic and login history
- Work with ASP.NET Core Blazor to create an ML.NET enabled web application
- Integrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detection
Who this book is for
If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.
商品描述(中文翻譯)
**建立、訓練和評估各種機器學習模型,例如回歸、分類和聚類,使用 ML.NET、Entity Framework 和 ASP.NET Core**
#### 主要特點
- 熟悉 ML.NET 框架及其組件和 API,並使用實際範例進行學習
- 學習如何使用 ML.NET 提供的工具構建、訓練和評估流行的機器學習演算法
- 通過與 TensorFlow 和其他庫的整合,擴展您現有的機器學習模型
#### 書籍描述
機器學習(ML)在科學、醫療保健和研究等許多行業中被廣泛使用,其受歡迎程度只會不斷增長。2018 年 3 月,微軟推出了 ML.NET,以幫助 .NET 愛好者進行機器學習的工作。通過本書,您將探索如何使用 C# 代碼構建 ML.NET 應用程序,並利用各種可用的 ML 模型。
本書首先為您提供機器學習的概述及所使用的機器學習演算法類型,並介紹 ML.NET 是什麼以及為什麼您需要它來構建機器學習應用程序。接著,您將探索 ML.NET 框架、其組件和 API。本書將作為實用指南,幫助您使用 ML.NET 庫構建智能應用程序。您將逐漸熟悉如何使用真實世界的範例和數據集實現回歸、分類和聚類等機器學習演算法。每一章將涵蓋實際實現,展示如何在 .NET 應用程序中實現機器學習。您還將學習如何在 ML.NET 應用程序中整合 TensorFlow。之後,您將發現如何將回歸模型的房價預測結果存儲到數據庫中,並使用 ASP.NET Core Blazor 和 SignalR 在您的網頁應用程序中顯示來自數據庫的實時預測結果。
在本書結束時,您將學會如何自信地在 ML.NET 中執行從基本到高級的機器學習任務。
#### 您將學到什麼
- 使用 C# 理解 ML.NET 的框架、組件和 API
- 使用 ML.NET 開發員工流失和文件分類的回歸模型
- 評估餐廳評論情感預測的分類模型
- 使用聚類模型進行文件類型分類
- 使用異常檢測來查找網絡流量和登錄歷史中的異常
- 使用 ASP.NET Core Blazor 創建一個支持 ML.NET 的網頁應用程序
- 在 WPF ML.NET 應用程序中整合預訓練的 TensorFlow 和 ONNX 模型以進行圖像分類和物體檢測
#### 本書適合誰
如果您是希望使用 ML.NET 實現機器學習模型的 .NET 開發人員,那麼本書適合您。本書對於尋找有效工具以實現各種機器學習演算法的數據科學家和機器學習開發人員也將大有裨益。為了有效理解本書所涵蓋的概念,您需要具備基本的 C# 或 .NET 知識。
作者簡介
Jarred Capellman is a Director of Engineering at SparkCognition, a cutting-edge artificial intelligence company located in Austin, Texas. At SparkCognition, he leads the engineering and data science team on the industry-leading machine learning endpoint protection product, DeepArmor, combining his passion for software engineering, cybersecurity, and data science. In his free time, he enjoys contributing to GitHub daily on his various projects and is working on his DSc in cybersecurity, focusing on applying machine learning to solving network threats. He currently lives just outside of Austin, Texas, with his wife, Amy.
作者簡介(中文翻譯)
Jarred Capellman 是位於德克薩斯州奧斯丁的尖端人工智慧公司 SparkCognition 的工程總監。在 SparkCognition,他領導工程和數據科學團隊,專注於業界領先的機器學習端點保護產品 DeepArmor,結合了他對軟體工程、網路安全和數據科學的熱情。在空閒時間,他喜歡每天在 GitHub 上貢獻各種專案,並正在攻讀網路安全的 DSc,專注於將機器學習應用於解決網路威脅。他目前與妻子 Amy 住在德克薩斯州奧斯丁郊區。
目錄大綱
- Getting started with Machine Learning and ML.NET
- Setting up the ML.NET environment
- Regression Model
- Classification Model
- Clustering Model
- Anomaly Detection Model
- Matrix Factorization Model
- Using ML.NET with .NET Core and Forecasting
- Using ML.NET with ASP.NET
- Using ML.NET with UWP
- Training and Building Production Models
- Using Tensorflow with ML.NET
- Using ONNX with ML.NET
目錄大綱(中文翻譯)
- Getting started with Machine Learning and ML.NET
- Setting up the ML.NET environment
- Regression Model
- Classification Model
- Clustering Model
- Anomaly Detection Model
- Matrix Factorization Model
- Using ML.NET with .NET Core and Forecasting
- Using ML.NET with ASP.NET
- Using ML.NET with UWP
- Training and Building Production Models
- Using Tensorflow with ML.NET
- Using ONNX with ML.NET