Hands-On Intelligent Agents with OpenAI Gym: Your guide to developing AI agents using deep reinforcement learning
暫譯: 實作智能代理與 OpenAI Gym:深度強化學習開發 AI 代理的指南

Praveen Palanisamy

買這商品的人也買了...

相關主題

商品描述

Implement intelligent agents using PyTorch to solve classic AI problems, play console games like Atari, and perform tasks such as autonomous driving using the CARLA driving simulator

Key Features

  • Explore the OpenAI Gym toolkit and interface to use over 700 learning tasks
  • Implement agents to solve simple to complex AI problems
  • Study learning environments and discover how to create your own

Book Description

Many real-world problems can be broken down into tasks that require a series of decisions to be made or actions to be taken. The ability to solve such tasks without a machine being programmed requires a machine to be artificially intelligent and capable of learning to adapt. This book is an easy-to-follow guide to implementing learning algorithms for machine software agents in order to solve discrete or continuous sequential decision making and control tasks.

Hands-On Intelligent Agents with OpenAI Gym takes you through the process of building intelligent agent algorithms using deep reinforcement learning starting from the implementation of the building blocks for configuring, training, logging, visualizing, testing, and monitoring the agent. You will walk through the process of building intelligent agents from scratch to perform a variety of tasks. In the closing chapters, the book provides an overview of the latest learning environments and learning algorithms, along with pointers to more resources that will help you take your deep reinforcement learning skills to the next level.

What you will learn

  • Explore intelligent agents and learning environments
  • Understand the basics of RL and deep RL
  • Get started with OpenAI Gym and PyTorch for deep reinforcement learning
  • Discover deep Q learning agents to solve discrete optimal control tasks
  • Create custom learning environments for real-world problems
  • Apply a deep actor-critic agent to drive a car autonomously in CARLA
  • Use the latest learning environments and algorithms to upgrade your intelligent agent development skills

Who this book is for

If you’re a student, game/machine learning developer, or AI enthusiast looking to get started with building intelligent agents and algorithms to solve a variety of problems with the OpenAI Gym interface, this book is for you. You will also find this book useful if you want to learn how to build deep reinforcement learning-based agents to solve problems in your domain of interest. Though the book covers all the basic concepts that you need to know, some working knowledge of Python programming language will help you get the most out of it.

Table of Contents

  1. Introduction to Intelligent Agents and Learning Environments
  2. Reinforcement Learning and Deep Reinforcement Learning
  3. Getting Started with OpenAI Gym and Deep Reinforcement Learning
  4. Exploring the Gym and its Features
  5. Implementing your First Learning Agent – Solving the Mountain Car problem
  6. Implementing an Intelligent Agent for Optimal Control using Deep Q-Learning
  7. Creating Custom OpenAI Gym Environments – Carla Driving Simulator
  8. Implementing an Intelligent & Autonomous Car Driving Agent using Deep Actor-Critic Algorithm
  9. Exploring the Learning Environment Landscape – Roboschool, Gym-Retro, StarCraft-II, DeepMindLab
  10. Exploring the Learning Algorithm Landscape – DDPG (Actor-Critic), PPO (Policy-Gradient), Rainbow (Value-Based)

商品描述(中文翻譯)

使用 PyTorch 實現智能代理以解決經典 AI 問題、玩 Atari 等控制台遊戲,以及執行如使用 CARLA 駕駛模擬器的自動駕駛任務

主要特點



  • 探索 OpenAI Gym 工具包和介面,使用超過 700 個學習任務

  • 實現代理以解決從簡單到複雜的 AI 問題

  • 研究學習環境並發現如何創建自己的環境

書籍描述


許多現實世界的問題可以分解為需要做出一系列決策或採取行動的任務。解決這些任務的能力不需要機器被編程,這要求機器具備人工智能並能夠學習適應。本書是一本易於遵循的指南,旨在實現機器軟體代理的學習算法,以解決離散或連續的序列決策和控制任務。


《Hands-On Intelligent Agents with OpenAI Gym》將帶您了解使用深度強化學習構建智能代理算法的過程,從配置、訓練、日誌記錄、可視化、測試和監控代理的基本構建塊開始。您將從零開始構建智能代理以執行各種任務。在最後幾章中,本書提供了最新學習環境和學習算法的概述,以及指向更多資源的鏈接,幫助您將深度強化學習技能提升到更高的水平。

您將學到什麼



  • 探索智能代理和學習環境

  • 理解強化學習(RL)和深度強化學習(deep RL)的基本概念

  • 開始使用 OpenAI Gym 和 PyTorch 進行深度強化學習

  • 發現深度 Q 學習代理以解決離散最優控制任務

  • 為現實世界問題創建自定義學習環境

  • 應用深度演員-評論者代理在 CARLA 中自動駕駛

  • 使用最新的學習環境和算法來提升您的智能代理開發技能

本書適合誰


如果您是學生、遊戲/機器學習開發者或 AI 愛好者,想要開始構建智能代理和算法以解決各種問題,並使用 OpenAI Gym 介面,本書非常適合您。如果您想學習如何構建基於深度強化學習的代理以解決您感興趣領域的問題,您也會發現本書非常有用。雖然本書涵蓋了您需要了解的所有基本概念,但對 Python 程式語言的基本知識將幫助您充分利用本書。

目錄



  1. 智能代理和學習環境介紹

  2. 強化學習和深度強化學習

  3. 開始使用 OpenAI Gym 和深度強化學習

  4. 探索 Gym 及其特性

  5. 實現您的第一個學習代理 – 解決 Mountain Car 問題

  6. 使用深度 Q 學習實現最優控制的智能代理

  7. 創建自定義 OpenAI Gym 環境 – CARLA 駕駛模擬器

  8. 使用深度演員-評論者算法實現智能與自動駕駛代理

  9. 探索學習環境的全景 – Roboschool、Gym-Retro、StarCraft-II、DeepMindLab

  10. 探索學習算法的全景 – DDPG(演員-評論者)、PPO(策略梯度)、Rainbow(基於價值)