Large Scale Machine Learning with Python
暫譯: 使用 Python 進行大規模機器學習
Bastiaan Sjardin, Luca Massaron, Alberto Boschetti
- 出版商: Packt Publishing
- 出版日期: 2016-07-29
- 定價: $1,600
- 售價: 6.0 折 $960
- 語言: 英文
- 頁數: 420
- 裝訂: Paperback
- ISBN: 1785887211
- ISBN-13: 9781785887215
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
Python 大規模機器學習 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$880$695 -
$3,150The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference (Hardcover)
-
$480$379 -
$580$458 -
$580$452 -
$980$833 -
$810$770 -
$280$266 -
$780$616 -
$454JavaEE 開發的顛覆者: Spring Boot實戰
-
$560$437 -
$520$411 -
$580$458 -
$550$435 -
$420$332 -
$690$538 -
$500$395 -
$403Unity 遊戲設計與實現 : 南夢宮一線程序員的開發實例 (修訂版)
-
$352面向機器智能的 TensorFlow 實踐
-
$390$308 -
$500$395 -
$1,310$1,245 -
$5,710$5,425 -
$920$874
相關主題
商品描述
Learn to build powerful machine learning models quickly and deploy large-scale predictive applications
About This Book
- Design, engineer and deploy scalable machine learning solutions with the power of Python
- Take command of Hadoop and Spark with Python for effective machine learning on a map reduce framework
- Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale
Who This Book Is For
This book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful.
What You Will Learn
- Apply the most scalable machine learning algorithms
- Work with modern state-of-the-art large-scale machine learning techniques
- Increase predictive accuracy with deep learning and scalable data-handling techniques
- Improve your work by combining the MapReduce framework with Spark
- Build powerful ensembles at scale
- Use data streams to train linear and non-linear predictive models from extremely large datasets using a single machine
In Detail
Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy.
Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.
Style and Approach
This efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly.
Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production.
This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
商品描述(中文翻譯)
快速學習構建強大的機器學習模型並部署大規模預測應用程式
本書介紹
- 利用 Python 設計、工程和部署可擴展的機器學習解決方案
- 使用 Python 掌握 Hadoop 和 Spark,以在 MapReduce 框架上進行有效的機器學習
- 構建最先進的模型並開發個性化推薦,以實現大規模的機器學習
本書適合誰
本書適合任何打算處理大型和複雜數據集的人。建議具備基本的 Python 和機器學習概念的熟悉度。具備統計學和計算數學的工作知識也會有所幫助。
您將學到什麼
- 應用最具可擴展性的機器學習演算法
- 使用現代最先進的大規模機器學習技術
- 通過深度學習和可擴展的數據處理技術提高預測準確性
- 通過將 MapReduce 框架與 Spark 結合來改善您的工作
- 構建大規模的強大集成模型
- 使用數據流從極大型數據集訓練線性和非線性預測模型,僅使用一台機器
詳細內容
大型 Python 機器學習專案涉及與專門的機器學習架構和設計相關的新問題,許多數據科學家尚未解決。但尋找演算法以及設計和構建處理大型數據集的平台的需求日益增長。數據科學家必須管理和維護日益複雜的數據專案,隨著大數據的興起,對計算和演算法效率的需求也在增加。《使用 Python 的大規模機器學習》揭示了一波新的機器學習演算法,這些演算法滿足可擴展性的需求並具有高預測準確性。
深入了解可擴展的機器學習及其三種可擴展性形式。加速可以在桌面計算機上使用的演算法,並提供有關平行化和內存分配的提示。掌握專門為大型專案設計的新演算法,這些演算法能夠處理更大的檔案,並了解在大數據環境中的機器學習。我們還將涵蓋在 Hadoop 和 Spark 的 MapReduce 框架上使用 Python 的最有效的機器學習技術。
風格與方法
這本高效且實用的書籍充滿了確保您的大規模 Python 機器學習快速且無縫運行所需的技術、提示和工具。
大規模機器學習解決了與市場上現有產品不同的問題。那些在 Hadoop 集群和數據密集型環境中工作的人現在可以學習從原型到生產構建強大機器學習模型的有效方法。
本書的寫作風格使來自其他語言(如 R、Julia、Java、Matlab)的程式設計師也能輕鬆跟隨。