Test-Driven Machine Learning

Justin Bozonier

  • 出版商: Packt Publishing
  • 出版日期: 2015-11-27
  • 售價: $1,240
  • 貴賓價: 9.5$1,178
  • 語言: 英文
  • 頁數: 180
  • 裝訂: Paperback
  • ISBN: 1784399086
  • ISBN-13: 9781784399085
  • 相關分類: TDD 測試導向開發Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

About This Book

  • Build smart extensions to pre-existing features at work that can help maximize their value
  • Quantify your models to drive real improvement
  • Take your knowledge of basic concepts, such as linear regression and Naive Bayes classification, to the next level and productionalize their models
  • Play what-if games with your models and techniques by following the test-driven exploration process

Who This Book Is For

This book is intended for data technologists (scientists, analysts, or developers) with previous machine learning experience who are also comfortable reading code in Python. This book is ideal for those looking for a way to deliver results quickly to enable rapid iteration and improvement.

What You Will Learn

  • Get started with an introduction to test-driven development and familiarize yourself with how to apply these concepts to machine learning
  • Build and test a neural network deterministically, and learn to look for niche cases that cause odd model behaviour
  • Learn to use the multi-armed bandit algorithm to make optimal choices in the face of an enormous amount of uncertainty
  • Generate complex and simple random data to create a wide variety of test cases that can be codified into tests
  • Develop models iteratively, even when using a third-party library
  • Quantify model quality to enable collaboration and rapid iteration
  • Adopt simpler approaches to common machine learning algorithms
  • Use behaviour-driven development principles to articulate test intent

In Detail

Machine learning is the process of teaching machines to remember data patterns, using them to predict future outcomes, and offering choices that would appeal to individuals based on their past preferences.

The book begins with an introduction to test-driven machine learning and quantifying model quality. From there, you will test a neural network, predict values with regression, and build upon regression techniques with logistic regression. You will discover how to test different approaches to Naive Bayes and compare them quantitatively, along with learning how to apply OOP (Object Oriented Programming) and OOP patterns to test-driven code, leveraging scikit-Learn.

Finally, you will walk through the development of an algorithm which maximizes the expected value of profit for a marketing campaign, by combining one of the classifiers covered with the multiple regression example in the book.

商品描述(中文翻譯)

關於本書

- 建立智能擴展以增強現有工作功能,幫助最大化其價值
- 量化您的模型以推動實際改進
- 將您對基本概念(如線性回歸和朴素貝葉斯分類)的知識提升到更高的水平,並將其模型投入生產
- 通過遵循測試驅動探索過程,與您的模型和技術進行假設性遊戲

本書適合誰

本書適合具有機器學習經驗的數據技術專家(科學家、分析師或開發人員),並且能夠熟練閱讀 Python 代碼。本書非常適合那些尋求快速交付結果以促進快速迭代和改進的人。

您將學到什麼

- 開始了解測試驅動開發,並熟悉如何將這些概念應用於機器學習
- 確定性地構建和測試神經網絡,並學會尋找導致模型異常行為的特殊案例
- 學習使用多臂賭徒算法在面對大量不確定性時做出最佳選擇
- 生成複雜和簡單的隨機數據,以創建各種可以編碼為測試的測試案例
- 迭代開發模型,即使使用第三方庫
- 量化模型質量以促進協作和快速迭代
- 採用更簡單的方法來處理常見的機器學習算法
- 使用行為驅動開發原則來表達測試意圖

詳細內容

機器學習是教導機器記住數據模式的過程,利用這些模式來預測未來結果,並根據個體過去的偏好提供吸引人的選擇。

本書以測試驅動的機器學習和量化模型質量的介紹開始。接下來,您將測試神經網絡,使用回歸預測值,並在回歸技術的基礎上構建邏輯回歸。您將發現如何測試不同的朴素貝葉斯方法並進行定量比較,並學習如何將面向對象編程(OOP)及其模式應用於測試驅動的代碼,利用 scikit-Learn。

最後,您將逐步開發一個算法,通過結合書中涵蓋的分類器與多重回歸示例,最大化營銷活動的預期利潤值。