Advanced Machine Learning with Python (Paperback)
John Hearty
- 出版商: Packt Publishing
- 出版日期: 2016-07-28
- 售價: $1,970
- 貴賓價: 9.5 折 $1,872
- 語言: 英文
- 頁數: 278
- 裝訂: Paperback
- ISBN: 1784398632
- ISBN-13: 9781784398637
-
相關分類:
Python、程式語言、Machine Learning
-
相關翻譯:
Python 高級機器學習 (Advanced Machine Learning with Python) (簡中版)
買這商品的人也買了...
-
$1,190$1,166 -
$299Python Power!: The Comprehensive Guide
-
$4,710$4,475 -
$1,019Digital Signal Processing: A Computer-Based Approach, 4/e (IE-Paperback)
-
$4,480$4,256 -
$1,100$1,045 -
$960Mastering Predictive Analytics with Python (Paperback)
-
$2,980$2,831 -
$1,980$1,881 -
$1,617Deep Learning (Hardcover)
-
$2,170$2,062 -
$2,208Deep Learning with Python: A Hands-on Introduction
-
$2,370$2,252 -
$590$460 -
$749Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (Paperback)
-
$825Python Machine Learning By Example
-
$390$332 -
$580$458 -
$1,860$1,767 -
$1,584Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence (Undergraduate Topics in Computer Science)
-
$1,160$1,102 -
$1,650$1,568 -
$1,240$1,178 -
$1,810$1,720 -
$880$695
相關主題
商品描述
Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python
About This Book
- Resolve complex machine learning problems and explore deep learning
- Learn to use Python code for implementing a range of machine learning algorithms and techniques
- A practical tutorial that tackles real-world computing problems through a rigorous and effective approach
Who This Book Is For
This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you!
Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful.
What You Will Learn
- Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms
- Apply your new found skills to solve real problems, through clearly-explained code for every technique and test
- Automate large sets of complex data and overcome time-consuming practical challenges
- Improve the accuracy of models and your existing input data using powerful feature engineering techniques
- Use multiple learning techniques together to improve the consistency of results
- Understand the hidden structure of datasets using a range of unsupervised techniques
- Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach
- Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together
In Detail
Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data.
The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce.
This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano.
By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering.
Style and approach
This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.
商品描述(中文翻譯)
透過精通Python中的尖端機器學習技術,解決具有挑戰性的數據科學問題。
關於本書:
- 解決複雜的機器學習問題,並探索深度學習。
- 學習使用Python代碼實現各種機器學習算法和技術。
- 通過嚴謹而有效的方法解決現實世界的計算問題的實用教程。
本書適合對象:
- Python開發人員、分析師或數據科學家,希望通過接觸數據科學中最強大的最新趨勢來增加現有技能。
- 如果您曾考慮過構建自己的圖像或文本標記解決方案,或者參加Kaggle競賽,那麼本書適合您!
- 具有Python經驗並對機器學習的核心概念有基礎將有所幫助。
您將學到什麼:
- 通過深入理解尖端深度學習算法,與頂尖數據科學家競爭。
- 通過清晰解釋的代碼應用您新學到的技能來解決實際問題。
- 自動化處理大量複雜數據,克服耗時的實際挑戰。
- 使用強大的特徵工程技術提高模型和現有輸入數據的準確性。
- 同時使用多種學習技術以提高結果的一致性。
- 使用各種無監督技術了解數據集的隱藏結構。
- 通過有效、迭代和驗證導向的方法獲得專家解決具有挑戰性的數據問題的見解。
- 通過使用強大的集成技術將多個模型結合在一起,進一步提高深度學習模型的效果。
詳細內容:
本書旨在帶領讀者深入了解當今頂尖數據科學家所使用的最相關和最強大的機器學習技術,以發揮Python算法的最大潛力。清晰的示例和詳細的代碼示例演示了深度學習技術、半監督學習等,同時涉及圖像、音樂、文本和金融數據等實際應用。
本書涵蓋的機器學習技術處於商業實踐的前沿。它們現在首次應用於圖像識別、自然語言處理和網絡搜索、計算創造力以及商業/金融數據建模等情境中。頂尖科技和數字公司的數據科學家正在使用深度學習算法和模型集合,但成功應用它們所需的技能雖然需求很高,但仍然稀缺。
本書旨在帶領讀者深入了解最相關和最強大的機器學習技術。清晰描述技術工作原理並提供詳細的代碼示例,演示深度學習技術、半監督學習等在實際應用中的應用。我們還將學習NumPy和Theano。
通過閱讀本書,您將學習一套高級機器學習技術,並在特徵選擇和特徵工程領域獲得一系列強大的技能。
風格和方法:
本書著重於澄清複雜算法背後的理論和代碼,使其實用、可用和易於理解。每個主題都以實際應用為例,提供廣泛的背景覆蓋和詳細的指導。