Building Machine Learning Systems with Python
暫譯: 使用 Python 建立機器學習系統
Willi Richert, Luis Pedro Coelho
- 出版商: Packt Publishing
- 出版日期: 2013-07-26
- 售價: $1,970
- 貴賓價: 9.5 折 $1,872
- 語言: 英文
- 頁數: 290
- 裝訂: Paperback
- ISBN: 1782161406
- ISBN-13: 9781782161400
-
相關分類:
Python、程式語言、Machine Learning
已過版
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
大話設計模式$620$490 -
Introduction to Algorithms, 3/e (IE-Paperback)$1,590$1,558 -
Linux Device Driver Programming 驅動程式設計$690$587 -
鳥哥的 Linux 私房菜-基礎學習篇, 3/e$820$648 -
精通 Python 3 程式設計, 2/e (Programming in Python 3: A Complete Introduction to the Python Language, 2/e)$680$537 -
深入淺出 Python (Head First Python)$780$616 -
會聲會影 X5 影片剪輯事件簿$450$356 -
C++ Primer, 5/e (Paperback)$2,580$2,451 -
Python for Data Analysis (Paperback)$1,490$1,416 -
MG90S 金屬齒輪馬達$200$190 -
$990Hadoop Operations and Cluster Management Cookbook (Paperback) -
Android App 程式設計教本之無痛起步, 2/e$480$408 -
Android 初學特訓班, 4/e (超人氣暢銷改版,適用 Android 4.X~2.X,附影音教學)$480$379 -
Visual Basic 2013 程式設計 18 堂特訓 (適用 2013/2012/2010,雙光碟)$420$332 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
挑戰 PHP / MySQL 程式設計與超強專題特訓班, 3/e (適用PHP5~PHP6)$550$435 -
NumPy Beginner's Guide, 2/e (Paperback)$1,790$1,701 -
Responsive Web Design 自動調適型網頁程式設計-讓網頁在電腦 / 平板 / 手機完美展現$360$306 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
Arduino 互動設計超入門:用 ArduBlock 圖形化控制真簡單 (附原廠授權之 ArduBlock 軟體、相關工具與全書專案範例)$350$277 -
實戰雲端作業系統建置與維護-VMware vSphere 5.5 虛擬化全面啟動$690$545 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
ASP.NET 專題實務 I -- C#入門實戰 (VS 2015版)$820$648
相關主題
商品描述
As the Big Data explosion continues at an almost incomprehensible rate, being able to understand and process it becomes even more challenging. With Building Machine Learning Systems with Python, you'll learn everything you need to tackle the modern data deluge - by harnessing the unique capabilities of Python and its extensive range of numerical and scientific libraries, you will be able to create complex algorithms that can 'learn' from data, allowing you to uncover patterns, make predictions, and gain a more in-depth understanding of your data.
Featuring a wealth of real-world examples, this book provides gives you with an accessible route into Python machine learning. Learn the Iris dataset, find out how to build complex classifiers, and get to grips with clustering through practical examples that deliver complex ideas with clarity. Dig deeper into machine learning, and discover guidance on classification and regression, with practical machine learning projects outlining effective strategies for sentiment analysis and basket analysis. The book also takes you through the latest in computer vision, demonstrating how image processing can be used for pattern recognition, as well as showing you how to get a clearer picture of your data and trends by using dimensionality reduction.
Keep up to speed with one of the most exciting trends to emerge from the world of data science and dig deeper into your data with Python with this unique data science tutorial.
- Learn how to create machine learning algorithms using the flexibility of Python
- Get to grips with scikit-learn and other Python scientific libraries that support machine learning projects
- Employ computer vision using mahotas for image processing that will help you uncover patterns and trends in your data
- Learn topic modelling and build a topic model for Wikipedia
- Analyze Twitter data using sentiment analysis
- Get to grips with classification and regression with real-world examples
商品描述(中文翻譯)
隨著大數據的爆炸性增長以幾乎難以理解的速度持續進行,理解和處理這些數據變得更加具有挑戰性。透過《使用 Python 建立機器學習系統》,您將學習到應對現代數據洪流所需的一切——利用 Python 的獨特能力及其廣泛的數值和科學庫,您將能夠創建能夠從數據中“學習”的複雜算法,從而揭示模式、進行預測,並深入理解您的數據。
本書提供了大量的實際案例,為您提供了一條進入 Python 機器學習的可行途徑。學習 Iris 數據集,了解如何構建複雜的分類器,並通過實際範例掌握聚類技術,這些範例以清晰的方式傳達複雜的概念。深入探討機器學習,並發現有關分類和回歸的指導,通過實際的機器學習專案概述情感分析和購物籃分析的有效策略。本書還介紹了計算機視覺的最新進展,展示如何使用影像處理進行模式識別,以及如何通過使用降維技術來更清晰地了解您的數據和趨勢。
跟上數據科學領域中最令人興奮的趨勢之一,並透過這本獨特的數據科學教程深入挖掘您的數據。
- 學習如何利用 Python 的靈活性創建機器學習算法
- 熟悉 scikit-learn 和其他支持機器學習專案的 Python 科學庫
- 使用 mahotas 進行影像處理的計算機視覺,幫助您揭示數據中的模式和趨勢
- 學習主題建模並為維基百科構建主題模型
- 使用情感分析分析 Twitter 數據
- 通過實際案例掌握分類和回歸技術
