Bifurcation Dynamics of a Damped Parametric Pendulum
暫譯: 阻尼參數擺的分岔動力學

Guo, Yu, Luo, Albert C. J.

  • 出版商: Morgan & Claypool
  • 出版日期: 2019-12-02
  • 售價: $1,610
  • 貴賓價: 9.5$1,530
  • 語言: 英文
  • 頁數: 98
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1681736845
  • ISBN-13: 9781681736846
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The inherent complex dynamics of a parametrically excited pendulum is of great interest in nonlinear dynamics, which can help one better understand the complex world.

Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum is discussed. Complete bifurcation trees of periodic motions to chaos in the parametrically excited pendulum include:

  • period-1 motion (static equilibriums) to chaos, and
  • period- motions to chaos ( = 1,2, ---,6,8, ---,12).

The aforesaid bifurcation trees of periodic motions to chaos coexist in the same parameter ranges, which are very difficult to determine through traditional analysis. Harmonic frequency-amplitude characteristics of such bifurcation trees are also presented to show motion complexity and nonlinearity in such a parametrically excited pendulum system. The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable periodic motions, the travelable and non-travelable chaos in the parametrically excited pendulum can be achieved. Based on the traditional analysis, one cannot achieve the adequate solutions presented herein for periodic motions to chaos in the parametrically excited pendulum. The results in this book may cause one rethinking how to determine motion complexity in nonlinear dynamical systems.

商品描述(中文翻譯)

強烈的參數激發擺的內在複雜動力學在非線性動力學中引起了極大的興趣,這有助於人們更好地理解複雜的世界。

儘管參數激發擺是最簡單的非線性系統之一,但到目前為止,這種參數擺中的複雜運動仍無法實現。本書討論了在阻尼的參數激發擺中,從週期運動到混沌的分岔動力學。參數激發擺中從週期運動到混沌的完整分岔樹包括:

- 週期-1運動(靜態平衡)到混沌,以及
- 週期運動到混沌(= 1, 2, ---, 6, 8, ---, 12)。

上述從週期運動到混沌的分岔樹在相同的參數範圍內共存,這在傳統分析中非常難以確定。這些分岔樹的諧波頻率-振幅特徵也被呈現出來,以顯示在這種參數激發擺系統中的運動複雜性和非線性。發現了在分岔樹上不可旅行和可旅行的週期運動。通過可旅行和不可旅行的週期運動的分岔樹,可以實現參數激發擺中的可旅行和不可旅行混沌。基於傳統分析,無法獲得本書中所呈現的從週期運動到混沌的充分解決方案。本書中的結果可能會使人重新思考如何在非線性動力系統中確定運動的複雜性。