買這商品的人也買了...
-
$420$332 -
$700$665 -
$403OpenCV 4 電腦視覺項目實戰, 2/e
-
$1,200$1,020 -
$520$406 -
$556雲原生模式
-
$750$638 -
$620$484 -
$1,000$850 -
$1,200$792 -
$1,000$790 -
$720$562 -
$680$537 -
$780$663 -
$750$593 -
$1,200$792 -
$1,200$1,020 -
$780$616 -
$780$616 -
$880$695 -
$680$537 -
$780$585 -
$890$587 -
$680$537 -
$1,800$1,188
相關主題
商品描述
- Plan and code all the parts of an LLM
- Prepare a dataset suitable for LLM training
- Finetune LLMs for text classification and with your own data
- Use human feedback to ensure your LLM follows instructions
- Load pretrained weights into an LLM
The large language models (LLMs) that power cutting-edge AI tools like ChatGPT, Bard, and Copilot seem like a miracle, but they're not magic. This book demystifies LLMs by helping you build your own from scratch. You'll get a unique and valuable insight into how LLMs work, learn how to evaluate their quality, and pick up concrete techniques to finetune and improve them. The process you use to train and develop your own small-but-functional model in this book follows the same steps used to deliver huge-scale foundation models like GPT-4. Your small-scale LLM can be developed on an ordinary laptop, and you'll be able to use it as your own personal assistant. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the book Build a Large Language Model (from Scratch) is a one-of-a-kind guide to building your own working LLM. In it, machine learning expert and author Sebastian Raschka reveals how LLMs work under the hood, tearing the lid off the Generative AI black box. The book is filled with practical insights into constructing LLMs, including building a data loading pipeline, assembling their internal building blocks, and finetuning techniques. As you go, you'll gradually turn your base model into a text classifier tool, and a chatbot that follows your conversational instructions. About the reader For readers who know Python. Experience developing machine learning models is useful but not essential. About the author Sebastian Raschka has been working on machine learning and AI for more than a decade. Sebastian joined Lightning AI in 2022, where he now focuses on AI and LLM research, developing open-source software, and creating educational material. Prior to that, Sebastian worked at the University of Wisconsin-Madison as an assistant professor in the Department of Statistics, focusing on deep learning and machine learning research. He has a strong passion for education and is best known for his bestselling books on machine learning using open-source software.
商品描述(中文翻譯)
學習如何從頭開始建立、訓練和調整大型語言模型(LLM)!在《從頭建立大型語言模型》中,您將從內部了解LLM的運作方式。在這本富有洞察力的書中,暢銷作家Sebastian Raschka將逐步指導您建立自己的LLM,並用清晰的文字、圖表和示例解釋每個階段。您將從最初的設計和建立,到對一般語料庫進行預訓練,一直到針對特定任務進行微調。
《從頭建立大型語言模型》教您如何:
- 計劃和編寫LLM的所有部分
- 準備適合LLM訓練的數據集
- 對LLM進行文本分類和使用自己的數據進行微調
- 使用人類反饋確保LLM遵循指示
- 將預訓練權重加載到LLM中
像ChatGPT、Bard和Copilot這樣的尖端人工智能工具所使用的大型語言模型(LLM)似乎像是一個奇蹟,但它們並非魔法。這本書通過幫助您從頭開始建立自己的LLM來揭開LLM的神秘面紗。您將獲得對LLM運作方式的獨特寶貴見解,學習如何評估其質量,並掌握具體的微調和改進技巧。
本書中用於訓練和開發自己的小型但功能完整的模型的過程與用於開發GPT-4等大規模基礎模型的步驟相同。您可以在普通筆記型電腦上開發小型LLM,並將其用作個人助理。
購買印刷版書籍將包含Manning Publications提供的PDF和ePub格式的免費電子書。
關於本書:
《從頭建立大型語言模型》是一本獨一無二的指南,教您如何建立自己的LLM。在這本書中,機器學習專家和作者Sebastian Raschka揭示了LLM在幕後的運作方式,揭開了生成式人工智能黑盒的神秘面紗。本書充滿了實用的建構LLM的見解,包括構建數據加載管道、組裝內部組件和微調技巧。在閱讀過程中,您將逐漸將基礎模型轉變為文本分類工具和遵循對話指示的聊天機器人。
關於讀者:
適合已經熟悉Python的讀者。具有機器學習模型開發經驗將有所幫助,但不是必需的。
關於作者:
Sebastian Raschka在機器學習和人工智能領域工作超過十年。他於2022年加入了Lightning AI,現在專注於AI和LLM研究,開發開源軟件和創建教育資料。在此之前,Sebastian在威斯康辛大學麥迪遜分校擔任統計學系助理教授,專注於深度學習和機器學習研究。他對教育有著強烈的熱情,以使用開源軟件進行機器學習的暢銷書籍而聞名。
作者簡介
作者簡介(中文翻譯)
Sebastian Raschka在機器學習和人工智慧領域已經工作了十多年。Sebastian於2022年加入了Lightning AI,現在專注於AI和LLM研究、開發開源軟體和創建教育資料。在此之前,Sebastian在威斯康辛大學麥迪遜分校擔任統計學系助理教授,專注於深度學習和機器學習研究。他對教育有著強烈的熱情,以使用開源軟體進行機器學習的暢銷書籍而聞名。